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Lévy flights in quenched random force fields

Hans C. Fogedby*
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

and NORDITA, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark
~Received 29 November 1995; revised manuscript received 6 January 1998!

Lévy flights, characterized by the microscopic step indexf , are forf ,2 ~the case of rare events! considered
in short-range and long-range quenched random force fields with arbitrary vector character to first loop order
in an expansion about the critical dimension 2f 22 in the short-range case and the critical fall-off exponent
2 f 22 in the long-range case. By means of a dynamic renormalization-group analysis based on the momentum
shell integration method, we determine flows, fixed point, and the associated scaling properties for the prob-
ability distribution and the frequency and wave number dependent diffusion coefficient. Unlike the case of
ordinary Brownian motion in a quenched force field characterized by a single critical dimension or fall-off
exponentd52, two critical dimensions appear in the Le´vy case. A critical dimension~or fall-off exponent!
d5 f below which the diffusion coefficient exhibits anomalous scaling behavior, i.e., algebraic spatial behavior
and long time tails, and a critical dimension~or fall-off exponent! d52 f 22 below which the force correlations
characterized by a nontrivial fixed point become relevant. As a general result we find in all cases that the
dynamic exponentz, characterizing the mean square displacement, locks onto the Le´vy index f , independent
of dimension andindependentof the presence of weak quenched disorder.@S1063-651X~98!01008-3#

PACS number~s!: 05.40.1j, 64.60.Ht, 05.70.Ln, 68.35.Fx
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I. INTRODUCTION

There is a current interest in the dynamics of fluctuat
manifolds in quenched random environments@1#. This fun-
damental issue in modern condensed matter physics is
countered in problems as diverse as vortex motion in hi
temperature superconductors, moving interfaces in por
media, and random field magnets and spin glasses. In
context the simplest case is that of a random walker i
random environment, corresponding to a zero-dimensio
fluctuating manifold. This problem has been treated ext
sively in the literature@2–4# and many results are known.

In the case of ordinary Brownian motion, characterized
a finite mean square step, in a pure environment with
disorder, the central limit theorem@5# implies that the statis-
tics of the walk is given by a Gaussian distribution with
mean square deviation proportional to the number of st
or, equivalently, the elapsed time, i.e., the mean square
placement is

^r 2~ t !&}Dt2/z, ~1.1!

where the dynamic exponentz assumes the valuez52 for
Brownian walk;D is the effective diffusion coefficient fo
the process and̂ & denotes an ensemble average.

There are, however, many interesting processes in na
that are characterized byanomalous diffusionwith dynamic
exponentzÞ2, owing to the statistical properties of the e
vironments@3,4#. Examples are found in chaotic systems@6#,
turbulence@7,8#, flow in fractal geometries@9#, and Lévy
flights @10,11#; these cases generally lead to enhanced di
sion or superdiffusion withz,2; we note that the ballistic
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case corresponds toz51. The other case of subdiffusion o
dispersive behavior withz.2 is encountered in various con
strained systems such as doped crystals, glasses, or fra
@12–16#.

Independent of the spatial dimensiond, ordinary Brown-
ian motion traces out a manifold of fractal dimensiondF

52 @17#. In the presence of a quenched disordered fo
field in d dimensions, the Brownian walk is unaffected f
d.dF , i.e., for d larger than the critical dimensiondc1

5dF the walk is transparent and the dynamic exponenz
locks onto the value 2 for the pure case. Below the criti
dimensiondc152 the long time characteristics of the walk
changed to subdiffusive behavior withz.2 @18–20#. In d
51, ^r 2(t)&}@ lnt#4, independent of the strength of th
quenched disorder@21#.

Lévy flights constitute an interesting generalization of o
dinary Brownian walks. Here the step size is drawn from
Lévy distribution characterized by the step indexf @5,11#.
The Lévy distribution has a long-range algebraic tail corr
sponding to large but infrequent steps, so-calledrare events.
This step distribution has the interesting property that
central limit theorem does not hold in its usual form. Forf
.2, the second moment or mean square deviation of the
distribution is finite, the central limit theorem holds, and t
dynamic exponentz for the Lévy walk locks onto 2, corre-
sponding to ordinary diffusive behavior; however, forf ,2
the mean square step deviation diverges, the rare large
events prevail determining the long time behavior, and
dynamic exponentz depends on the microscopic step indexf
according to the relationshipz5 f ( f ,2), indicating
anomalous enhanced diffusion, that is, superdiffus
@11,22,23#. The ‘‘built-in’’ superdiffusive character of Le´vy
flights has been used to model a variety of physical proce
such as self-diffusion in micelle systems@24# and transport
in heterogeneous rocks@22#.
r-
1690 © 1998 The American Physical Society
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In a recent letter@25# we considered Le´vy flights in the
presence of a quenched isotropic random force field and
amined the interplay between the ‘‘built-in’’ superdiffusiv
behavior of the Le´vy flights and the pinning effect of the
random environment generally leading to subdiffusive
havior. Generalizing the discussion in@18,20,26# we found
that in the case of enhanced diffusion forf ,2 the dynamic
exponentz locks onto f , independentof the presence o
weak disorder. On the other hand, we could still identify
critical dimensiondc152 f 22, depending on the step inde
f for f ,2. Below dc1 the quenched disorder becomesrel-
evant as indicated by the emergence of a nontrivial fix
point in the renormalization-group analysis. We also brie
discussed the behavior of the subleading diffusive term. H
another critical dimensiondc25 f enters in the sense that fo
dimensions less thandc2 the correction to the ordinary dif
fusion coefficient diverges. This feature has also been
cussed from a heuristic point of view in Ref.@27#. Note that
in the Brownian case forf 52 the critical dimensions coin
cide, i.e.,dc15dc2.

In the present paper we discuss in more detail Le´vy flights
in quenched random force field with arbitrary range and v
tor character thus corroborating and extending the results
tained in Ref.@25#. The paper is organized in the followin
manner. In Sec. II we introduce and discuss Le´vy flights in a
pure environment. Next we derive the Langevin equation
Lévy flights in a force field and the associated Fokker-Plan
equation for the probability distribution. In Sec. III we esta
lish perturbation theory for the probability distribution in th
Fokker-Planck equation averaged over the quenched ran
force field and set up the renormalization-group analysis
order to extract the scaling properties and control diverg
contributions, we dilute the degrees of freedom by mean
the momentum shell integration method. Finally we der
differential renormalization-group equations to first loop o
der for the parameters in the model. In Sec. IV we determ
flows and fixed point structure for the renormalization-gro
equations in some detail in the case of short- and long-ra
isotropic force fields and determine the scaling propert
Since the discussion for anisotropic force fields is qu
analogous, we summarize this case in the Appendixes.
conclude the paper with a summary and a conclusion in
V.

In the Appendixes we include more technical aspects
our calculations. In Appendix A, we discuss the derivation
a Fokker-Planck equation for Le´vy flights, in Appendix B,
we derive self-energy, vertex, and force corrections to fi
loop order, and in Appendix C, we derive renormalizatio
group equations in the case of Le´vy flights in a quenched
force field. In Appendix D, we consider the renormalizatio
group flow in the isotropic short- and long-range cases
Appendix E, we show that the dynamical exponent does
depend on whether we keep the Le´vy coefficient or diffusion
coefficient fixed under scaling. In Appendix F, we summ
rize the isotropic long-range case for Brownian walks.
nally, Appendixes G and H are devoted to a discussion of
anisotropic short- and long-range cases, respectively.

II. THE MODEL

It is our aim to analyze the scaling properties of Le´vy
flights in a quenched random force field. For that purpose
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us first discuss and summarize the properties of Le´vy flights
in a pure environment.

A. Lévy flights

We consider a particle or for that matter a gas of non
teracting particles performing independent isotropic rand
motion in d dimensions. For the step size distribution w
assume a normalized Le´vy distribution @5,11,17,28–31#

p~h!ddh5
f h0

f

Sd
h212 fdh dV and Sd5

2pd/2

~d/221!!
.

~2.1!

Here,h is the microscopic step and the algebraic behavio
the large step regime is characterized by the microscopic
index f . In order to ensure normalization of the distributio
p(h) we introduce a lower cutoffh0 of the order of a mi-
croscopic length and assume a positive step index,f .0. Sd
is the full solid angle on the surface of a unit sphere ind
dimensions. In Fig. 1 we have depicted the Le´vy distribution
p(h).

The macroscopic physics ensuing from the Le´vy distribu-
tion for the microscopic elementary step depends entirely
the range characteristics ofp(h). For f .2, the second mo-
ment or mean square step,̂h2&5*p(h)h2ddh5( f / f
22)h0

2, exists and a characteristic step size is given by
root mean square deviation^h2&1/2. For 1, f ,2, the second
moment diverges, however the mean step̂h&
5*p(h)hddh5( f / f 21)h0 is finite, defining an effective
step size. In the interval 0, f ,1, the first moment diverges
and even a mean step size is not defined.

For a Lévy flight consisting ofN steps the end-to-end
distance of the random walk isrN5( i 51

N hi or, assuming one
step per unit time,t5N, r(t)5( i 51

t hi , and it follows gen-
erally that the mean square displacement for statistically
dependent step events is given by

^r 2~ t !&5t^h2&. ~2.2!

Consequently, for general step distributions with a finite s
ond moment or mean square step, as in particular the cas
Lévy distribution for f .2, the mean square displacement
proportional to the elapsed time. This behavior is charac
istic of ordinary Brownian motion leading to diffusive be

FIG. 1. Plot of the Le´vy distribution for a microscopic steph.
The tail of p(h) is characterized by the step indexf . The distribu-
tion is cut off at a smallest step distanceh0 corresponding to a
microscopic length.



th

a
.
f

is

n

d

n
n-
v-

-

t

e

.
rect

e
ing

is

ent

e

-

q.
su-
n
hts

the

r-

e

ak-

rete

p

1692 PRE 58HANS C. FOGEDBY
havior for a gas of Brownian walker and corresponds to
dynamic exponentz52 in Eq. ~1.1! @5,32#.

On the other hand, for Le´vy flight with step indexf ,2
the second moment̂h2& diverges, Eq.~2.2! is undefined,
and we cannot define a mean square displacement and
namic exponentz according to the heuristic definition in Eq
~1.1!. However, this point will be clarified below in terms o
the probability distribution.

The probability distribution for the random walker
given by P(r,t)5^d@r2r(t)#& and is easily derived by
means of the method of characteristic functions@5,17,30#.
We obtain, noting thatt is discrete,

P~r,t !5E eik•r @p~k!# t
ddk

~2p!d
, ~2.3!

wherep(k) is the Fourier transform of the step distributio
p(h), p(k)5*e2 ik•hp(h)ddh. At large r, Eq. ~2.3! samples
the smallk region. For smallk the behavior ofp(k) is con-
trolled by the algebraic power-law tail ofp(h). We find

p~k!512D~kh0!m.exp@2Dh0
mkm#, ~2.4!

where D is a dimensionless geometrical factor andm is a
scaling index. Forf .2, the second moment^h2& exists and
m locks onto 2; forf ,2, ^h2& diverges andm5 f . By in-
sertion we obtain

P~r,t !5E exp@ ik•r2utuDh0
mkm#

ddk

~2p!d
. ~2.5!

In Fig. 2 we have shown the dependence of the scaling in
m on the step indexf . From the structure of Eq.~2.5! we
infer thatP(r,t) has the scaling form

P~r,t !5utu2d/mG~r /utu1/m!. ~2.6!

For f .2, m52 and the scaling functionG(x) takes a
Gaussian form characteristic of ordinary Brownian motio
G(x).exp(2const3x2). This is a consequence of the ce
tral limit theorem@5#, which here implies a universal beha
ior characterized by the exponentm52. For f ,2, m5 f and
the scaling functionG(x) can in general not be given explic
itly in terms of known functions. Form51, the ballistic case
r;t, we find the Cauchy distribution G(x).(1
1const3x2)2[(d11)/2]. It is, moreover, easy to show tha
G(x)→const forx→0 andG(x)→0 for x→`.

The scaling properties of Le´vy flights are described by
Eqs.~2.5! and~2.6!. From Eq.~2.6! we infer the mean squar

FIG. 2. The scaling indexm plotted as a function of the ste
index f .
e

dy-

ex

,

displacement̂ r 2(t)&;t2/m, i.e., according to Eq.~1.1! the
dynamic exponentz5m, indicating superdiffusive behavior
However, as mentioned above, this reasoning is not cor
for Lévy flights. The expression in Eq.~2.2! is not defined
for Lévy flights since^h2& diverges and the scaling regim
must be defined with some care if we wish to give mean
to Eq.~1.1!. One way is to consider Le´vy flights in a growing
volume of linear sizeL; the mean square displacement
then given bŷ r 2(t)&L5* r r

2P(r,t)ddr , whereV5Ld. Using
the scaling form in Eq.~2.6! with

G~r !5S 1

D1/mh0
D dE exp@ ik•r/~D1/mh0!2km#

ddk

~2p!d
,

~2.7!

we obtain, changing variables, the mean square displacem

^r 2~ t !&L5utu2/mE
~L/t1/m!d

r 2G~r !ddr . ~2.8!

From Eqs.~2.6! and~2.8! we infer that the characteristic tim
in the problem is the time;Lm it takes the random walker to
traverse the volumeV;Ld. At long times, i.e., fort1/m@L,

^r 2~ t !&L5utu2/mE
0
r 2G~r !ddr 5const3utu2/m ~2.9!

and comparing with Eq.~1.1! we deduce the dynamic expo
nentz5m. At short times,t1/m!L, usingG(r );r 2m2d for r
large, we obtain

^r 2~ t !&L5const3utuL22m, ~2.10!

in accordance with Eq.~2.2!. For Lévy flights with m
,2, ^r 2(t)&L diverges fort→`. In the Brownian case,m
52 and ^r 2(t)&}utu in both cases in accordance with E
~2.2!. Summarizing, in order to characterize anomalous
perdiffusion arising from Le´vy flights by means of the mea
square displacement we must conceptually confine the flig
to a box of sizeL and define the scaling region fort@Lm.
Alternatively, we can discuss the scaling properties and
identification ofz by means of the scaling form in Eq.~2.6!
where the argumentr controls the range in question.

B. Langevin equation for Lévy flights

It is convenient to discuss Le´vy flights in terms of a
Langevin equation with ‘‘power-law’’ noise@32,33#. In an
arbitrary force fieldF(r), representing the quenched diso
dered environment, the equation takes the form

dr~ t !

dt
5F„r~ t !…1h~ t !. ~2.11!

Here h(t) is the instantly correlated power-law white nois
with the isotropic distribution given in Eq.~2.1! at a particu-
lar time instant.

The microscopic stepshi with distribution p(hi) consti-
tuting a Lévy flight are discrete processes, so properly spe
ing the Langevin equation~2.11! is the continuum limit of
the corresponding difference equation defined for a disc
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time stepD. This limit is singular and it is instructive to
discuss the limiting procedure in some detail.

Limiting our discussion to the force-free case,F50, set-
ting rn5r(tn),hn5h(tn), and tn5nD, the difference equa
tion is given by (rn112rn)/D5hn with solution rn

5D(p50
n hp . From the definition ofP(r,n)5^d(r2rn)&,

we obtain, usingd(r)5*exp(2ik•r)ddk/(2p)d together
with exp(ik•rn)5)p50

n exp(iDk•hp) for P(k,n)
5*exp(ik•r)P(r,n)ddr ,

P~k,n!5^exp~ iDk•h!&n ~2.12!

and the issue is to define the continuum limitD→0, keeping
t5nD fixed, of the expression forP(k,n) in Eq. ~2.12!. For
simplicity we first consider the case of a Gaussian distri
tion for p(h), i.e., the case of ordinary Brownian motio
p(h)5(1/2sp1/2)dexp(2h2/4s2) of width 2s. Evaluating
^exp(iDk•h)& by completing the square in the exponent, w
obtain P(k,n)5exp(2D2s2k2n). In the continuum limit,
Ds2→D and we have the Gaussian distribution

P~k,t !5exp@2Dk2t#. ~2.13!

Correspondingly, the white noise condition, i.e., uncorrela
noise,^hn

ahm
b &5s2dnmdab , becomes in the continuum limi

^ha~ t !hb~ t8!&5Ddabd~ t2t8!. ~2.14!

Consequently, in the Gaussian case we must in the c
tinuum limit D→0 scale the widths of the noise distribution
to infinity in order to obtain a finite diffusion coefficientD
5s2D. In the Lévy case the noise distributionp(h) is given
by Eq. ~2.1! and from Eq. ~2.4!, ^exp(iDk•h)&51
2D(kDh0) f for f ,2 and kDh0!1, i.e., P(k,n)5@1
2D(kDh0) f #n. Using the relation (12x/n)n→exp(2x) for
n→`, we obtain in the continuum limitD→0 and t5nD
fixed,

P~k,t !5exp@2Dh0
f D f 21kf t#. ~2.15!

In order to eliminate the discrete time stepD and keep the
coefficientD fixed, we must renormalize the cutoffh0 in the
Lévy distribution ~2.1! according toh0

f D f 2151. We notice
that the borderline case isf 51. For 1, f ,2, h0→` for
D→0, i.e., the cutoff moves out to infinity. For 0, f ,1, on
the other hand,h0→0 for D→0. We also notice thatDh0
→0 so thatkDh0!1 is satisfied for allf .

Summarizing, we can without loss of generality discu
Lévy flights ~and Brownian motion! in terms of a continuous
Langevin equation provided we scale the underlying disc
noise distributions accordingly. Note, however, that the
renormalizations are not observable; the problem at han
defined by the Langevin equations~2.11!.

Lévy flights in an arbitrary force field are in principl
described by the Langevin equation~2.11! together with the
distribution in Eq.~2.1! for the noiseh. For a given force
field, the only random aspect resides in the noiseh, which
drives the positionr of the random walker; the force fiel
F(r) acts as a static background. However, for a rand
force field modeling the quenched static environment,
Langevin equation~2.11! harbors two different kinds of sto
chasticity and it is convenient to recast the problem in ter
-

d

n-

s

te
e
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e
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of an associated Fokker-Planck equation, thereby absor
the fluctuating Le´vy noiseh(t).

C. Fokker-Planck equation for Lévy flights

In the absence of the force field, i.e.,F(r)50, it follows
from Eq. ~2.5! that P(k,t) satisfies the equation

]P~k,t !

]t
52D1kmP~k,t !, ~2.16!

where we have absorbed the renormalized cutoffh0 in the
Lévy coefficientD15Dh0

m . The form of Eq.~2.16! leads us
to suggest the following Fokker-Planck equation for a Le´vy
walker in a force field:

]P~r,t !

]t
52¹•„F~r!P~r,t !…1D1¹mP~r,t !1D2¹2P~r,t !.

~2.17!

Here the first term on the right-hand side of Eq.~2.17! is the
usual drift term due to the motion of the walker in the for
field and the second term arises from Eq.~2.16!, where we
have introduced the ‘‘fractional gradient operator’’¹m as the
Fourier transform of2km. ¹m;r 2d2m is a spatially nonlo-
cal integral operator reflecting the long-range character of
Lévy steps; form52 it reduces to the usual Laplace opera
describing ordinary diffusion@34#. Finally, we have for later
purposes included the ordinary diffusion term,D2¹2P(r,t),
originating from the next to leading long-range part of t
distributionp(h) and corresponding to the next leading ter
of orderk2 in the expansion in Eq.~2.4!. The derivation of
the Fokker-Planck equation is discussed in more detai
Appendix A.

For the quenched random force field we assume a Ga
ian distribution,

p„F~r!…}expF2 1
2 E ddrddr 8Fa~r !Dab~r2r 8!21Fb~r 8!G ,

~2.18!

with the spatial correlations given by

^Fa~r!Fb~r8!&F5Dab~r2r8!. ~2.19!

HereDab(r2r8) is the force correlation function expressin
the range and vector character ofF(r) and ^ &F denotes an
average over the force field according to the distribut
~2.18!.

In the unconstrained caseDab is diagonal; however, gen
erally the force field breaks up into a longitudinal curl-fre
part E and a transverse divergence-free partB, i.e., F5E
1B, where¹•B50 and¹3E50 @4,26,35#. Assuming that
the cross correlation ofE and B vanishes,̂ EaBb&50, we
have in Fourier space

^Ea~k!Eb~k8!&F5~2p!dd~k1k8!Fkakb

k2 GDL~k! ,

~2.20!
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1694 PRE 58HANS C. FOGEDBY
^Ba~k!Bb~k8!&F5~2p!dd~k1k8!Fdab2
kakb

k2 GDT~k!.

~2.21!

The case of an unconstrained force field then correspond
DL5DT5D and we obtain the force correlation function

^Fa~k!Fb~k8!&F5~2p!dd~k1k8!dabD~k!. ~2.22!

The range of the force correlations is characterized by
functionsDL(k) andDT(k).

In the case of a finite range, e.g., DL,T(r)
}exp(2rk0)/r

d22, with range parameter 1/k0, we have
DL,T(k)}1/(k21k0

2). In the long-wavelength limitk→0,
DL,T(k)→const, corresponding to thezero range case
DL,T(r)}d(r). For infinite range the force correlations are
characterized by the exponenta, DL,T(r)}r 2a,DL,T(k)
}ka2d.

Summarizing, we characterize a general force field by
following expressions for the longitudinal and transve
force correlation functions:

DL~k!5D1
L1D2

LkaL2d, ~2.23!

DT~k!5D1
T1D2

TkaT2d. ~2.24!

We have here for completion introduced two separate in
ces,aL and aT , for the power-law behavior of the longitu
dinal and transverse correlations, respectively. ForaL,T

.d,DL,T(k)→D1
L,T , in the long-wavelength limit and we

effectively retrieve the zero-range case; foraL,T

,d,DL,T(k)→D2
L,TkaL,T2d and the specific long-range be

havior enters in thek→0 limit.

III. RENORMALIZATION-GROUP THEORY

The problem of analyzing the asymptotic long time sc
ing properties of Le´vy flights in a random quenched forc
field has now been reduced to an analysis of the rand
Fokker-Planck equation~2.17!, in conjunction with the force
distribution in Eq.~2.18! and the force correlation function
in Eqs.~2.19!–~2.21!. In particular, we wish to evaluate th
scaling behavior of the distributionP(r,t) averaged with re-
spect to the force field, i.e.,^P(r,t)&F .

A. Perturbation theory

There are a variety of techniques available in order
treat the random Fokker-Planck equation~2.17!. Applying
the Martin-Siggia-Rose formalism in functional form@36–
40# and using either the replica method@4# or an explicit
causal time dependence@18,38,40#, one can average over th
quenched force field and construct an effective field theo
A more direct method, which we shall adhere to in t
present discussion, amounts to an expansion of the Fok
Planck equation~2.17! in powers of the force field and a
average over products ofF(r) according to the distribution
in Eq. ~2.18!.

Defining the Laplace-Fourier transform

P~k,v!5E d3r dtexp~ ivt2 ik•r!P~r,t !u~ t !, ~3.1!
to

e

e
e

i-

-

m

o

y.

er-

whereu(t) is the step function, we obtain, introducing fo
later purposes the dimensionless coupling strengthslL and
lT for the vertices coupling toE and B, respectively, the
Fokker-Planck equation

P~k,v!5G0~k,v!P0~k!1G0~k,v!

3E ddp

~2p!d
@~2 i !lLk•E~k2p!

1~2 i !lTk•B~k2p!#P~p,v!. ~3.2!

Here the force field is averaged according to Eqs.~2.20! and
~2.21! for all pairwise contractions according to Wick’s the
rem following from the Gaussian distribution in Eq.~2.18!,
P0(k)5P(k,t50) is the initial distribution, and we have
moreover, introduced the unperturbed propagator or Gre
function

G0~k,v!5
1

2 iv1D1km1D2k2
. ~3.3!

The integral equation~3.2! immediately lends itself to a di-
rect expansion in powers ofE,B or lL ,lT . In order to dis-
cuss the various perturbative contributions, it is conveni
to represent Eq.~3.2! diagrammatically as done in Fig.
@4,26,41–44#. Here,P(k,v) is characterized by a solid ba
P0(k) by a cross, the vertices2 ilL and2 ilT by dots, the
force fieldsE and B by wiggly lines, andG0(k,v) by a
directed arrow.

Hence, iterating Eq.~3.2! in powers oflL and lT and
averaging over the force fields, keeping one compon
fixed, we identify perturbative corrections to~i! the self en-
ergy, ~ii ! the vertex functions, and~iii ! the force correlation
functions. Defining the self-energyS(k,v) by means of the
Dyson equation,

G~k,v!5G0~k,v!1G0~k,v!S~k,v!G~k,v!, ~3.4!

shown diagrammatically in Fig. 4, where the renormaliz
propagator is indicated by a solid directed line and the s
energy by a circle, we derive the renormalized Fokk
Planck equation shown in Fig. 5,

FIG. 3. Diagrammatic representation of the Fokker-Plan
equation.

FIG. 4. Diagrammatic representation of the Dyson equation
fining the self-energyS(k,v) and the renormalized propagato
G(k,v).
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P~k,v!5G~k,v!P0~k!1G~k,v!

3E ddp

~2p!d
@~2 i !LL~k,p,v!•E~k2p!

1~2 i !LT~k,p,v!•B~k2p!#P~p,v!. ~3.5!

Here,LL(k,p,v) andLT(k,p,v), depicted as circles in Fig
5, are the renormalized vertex functions; to lowest or
LL,T(k,p,v)5lL,Tk. In a similar manner we extract correc
tions to the force correlation function from the four-poi
vertex functionG(k,p,l,v) in Fig. 6 and the contraction
*G(k,k,l,v)G(k2 l,v)ddl /(2p)d, also shown in Fig. 6. To
lowest orderG(k,k,l,v)52kaDab( l )(k2 l )b, summed over
a andb, whereDab is the force correlation function define
in Eqs.~2.19!–~2.21!. To second order inlL andlT or first
order inDL andDT, corresponding to first loop order in th
field theoretic formulation@18,36–40#, we find diagrammatic
contributions toS, LL,T , andG shown in Fig. 7, Fig. 8, and
Fig. 9, respectively.

Let us first discuss the self-energy correction. Solving
Dyson equation~3.4!, the self-energyS(k,v) enters in the
renormalized propagator,

G~k,v!5
1

2 iv1D1km1D2k22S~k,v!
, ~3.6!

and directly determines the diffusional character of the r
dom walker. In Appendix B we discuss in some detail t
evaluation ofS(k,v) to leading order ink2 on the basis of
the diagrams in Fig. 7.

In the case of an isotropic unconstrained zero-range fo
correlation function,lL5lT5l andDL(k)5DT(k)5D, we
have in particular

FIG. 6. Diagrammatic representation of the four-point ver
function G(k,p,l,v) and the contraction *G(k,k,l,v)G(k
2 l,v)ddl /(2p)d.

FIG. 5. Diagrammatic representation of the renormaliz
Fokker-Planck equation.
r

e

-

e

S~k,v!52l2DE ddp

~2p!d
k•~k/21p!G0~k/21p,v!.

~3.7!

To leading order ink2 the static contribution,S(k,0), given
in Appendix B, only contributes to the ordinary diffusio
term D2k2 in Eq. ~3.6!; there is no correction to the anoma
lous Lévy term D1km. We shall see later that this has
profound effect on the scaling properties of Le´vy flights. For
the correction to the diffusion coefficientD2 we then find,
performing the integration over the solid angle,

dD25
1

2
l2D

Sd

d~2p!d

3E
0

L

dp
D1~d2m!pm1d211D2~d22!pd11

@D1pm1D2p2#2
,

~3.8!

whereSd is given in Eq.~2.1! and we have introduced a u
cutoff corresponding to a microscopic length of order 1/L. In
the long-wavelength limitp→0, the integrand in Eq.~3.8! is
dominated by the leading Le´vy term;pm and simple power
counting shows that the integral is convergent ford.m
yielding a correction toD2. For d,m, the integral diverges
in the infrared limit p→0 and we need a renormalization
group approach in order to disentangle the true asympt
scaling behavior. We encounter here the firstcritical dimen-

FIG. 7. Diagrammatic representation of the first loop order c
rection toS(k,v).

FIG. 8. Diagrammatic representation of the first loop order c
rection toL(k,p,v).

d



e
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FIG. 9. Diagrammatic representation of th
first loop order corrections toG(k,p,l,v).
if-

ion

o-
f
dix
sion dc25m characterizing the behavior of the ordinary d
fusion coefficientD2. In the Brownian case@18–20# m52
and the critical dimension is 2.

In a similar way we can discuss the vertex correct
L(k,p,v) on the basis of the diagrams in Fig. 8 in the is
tropic case. The vertex functionL describes the coupling o
the random walker to the quenched force field. In Appen
B we discuss in detail the evaluation ofL. We obtain
ex
L~k,p,v!5lk2l3DE ddl

~2p!d
~k2 l!k•~p2 l!G0~k2 l,v!G0~p2 l,v!, ~3.9!

from which we extract to leading order ink and forv50 the perturbative correction tol,

dl52l3D
Sd

d~2p!dE0

L

dp
pd11

@D1pm1D2p2#2
. ~3.10!

Similarly to our discussion of the self-energy, the integral in Eq.~3.10! is convergent ford.2m22, whereas for
d,2m22 the correctiondl diverges in the far-infrared limitp→0. We note here the appearance of a secondcritical
dimension dc152m22, characterizing the behavior of the vertex correction. In the Brownian casem52 and both the vertex
and self-energy diverge ford,2. We also note that form52 the first order correction toD2 actually vanishes ford52, thus
requiring an expansion to second order inD ~fourth order inl) or, equivalently, to two-loop order@18#.

Finally, we discuss the correction to the force correlation functionD extracted from the contraction of the four-point vert
function depicted in Figs. 6 and 9. From the results in Appendix B, we deduce

G~k,p,l,v!52k•~p2 l!l2D1l4D2E ddn

~2p!d
k•~p2n!~k2n!•~p2 l!G0~k2n,v!G0~p2n,v!

1l4D2E ddn

~2p!d
k•~p2 l!~k2n!•~p2 l1n!G0~k2n,v!G0~p2 l1n,v! ~3.11!
r-
rce
-

m

es
ing
and we obtain, contracting Eq.~3.11!, to leading order ink
and forv50 the perturbative correction toD,

dD5l2D2
Sd

~2p!dS 12
1

dD E
0

L

dp
pd11

@D1pm1D2p2#2
.

~3.12!

Also here we note that the correction toD diverges ford
,dc1. In the Brownian case,m52, the critical dimensions
coincide, i.e.,dc15dc2.
B. Momentum shell integration

In order to disentangle the breakdown of primitive pertu
bation theory and deduce the scaling properties of the fo
averaged distribution̂ P(r,t)&F and the mean square dis
placement ^^r 2(t)&&F , we carry out a dynamic
renormalization-group analysis, following the momentu
shell integration method@26,41,43,45#. This approach is a
way of systematically diluting the short-wavelength degre
of freedom, keeping the long-wavelength modes controll
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the asymptotic scaling behavior. The method derives fr
Wilson’s original momentum space procedure@46# applied
to static critical phenomena@42# and is an implementation o
the real-space Kadanoff construction in momentum sp
@43#. The application of renormalization-group theory to d
namic phenomena described by Langevin-type equat
was initiated in the context of dynamical critical phenome
in Refs. @42,47,48#. The implementation of the momentum
shell integration method was introduced and discussed
Refs.@41–43#.

Here we briefly review the momentum shell integrati
method in the context of the Fokker-Planck equation~3.2!,
which in the case of an isotropic force field is expressed
the symbolic form

P5G0P01lG0FP. ~3.13!

FIG. 10. Diagrammatic representation of the renormaliz
Fokker-Planck equation valid in the long-wavelength region 1,k
,e2 l . The slash indicates corrections evaluated on the shelle2 l

,k,1.
o
o
nc
ig
s

m
e
rt-
r
n
e

he
th
ce

ns
a
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n

Setting the uv cutoffL51, dividing the wave number inter
val 0,k,1 into a long-wavelength regime 0,k,e2 l , l
.0, including the long distance scaling region, and a sh
wavelength ‘‘shell’’ regione2 l,k,1, the idea is now to
average out the short-wavelength degrees of freedom, u
the distribution of the force field in Eqs.~2.18! and~2.19! in
the shell e2 l,k,1, in order to derive a renormalize
Fokker-Planck equation valid for long wavelengths 0,k
,e2 l . Projecting the Fokker-Planck equation~3.13! onto the
two regions in wave number space, we obtain the coup
equation

P85G08P081lG08~FP1F8P1FP81F8P8!, ~3.14!

P5G0P01lG0~FP1F8P1FP81F8P8!, ~3.15!

where the prime refers to the shelle2 l,k,1. Averaging the
‘‘long-wavelength’’ Fokker-Planck equation~3.15! with re-
spect to the short-wavelength degrees of freedom in
shell, we have, noting that^F8&F850,

^P&F85G0P01lG0FP1lG0F^P8&F81lG0^F8P8&F8 .
~3.16!

The evaluation of̂ P8&F8 and^F8P8&F8 to a given order inl
is now achieved by expanding the ‘‘short-wavelength
Fokker-Planck equation~3.14! and averaging overF8. Using
that G0FG08 and G0F8G08F8G08 vanish in the long-
wavelength limit, since two small wave numbers cannot a
up to a wave number in the shell, and defining the fo
contraction according to the notationFci

8 Fcj
8 5^F8F8&d i j , we

obtain

d

^P&F85G0P01lG0F^P&F81l2G0Fc8G08Fc8^P&F81l4G0Fc1
8 G08Fc2

8 G08Fc1
8 G08Fc2

8 ^P&F8

1l4G0Fc1
8 G08Fc2

8 G08Fc2
8 G08Fc1

8 ^P&F81l3G0Fc8G08FG08Fc8^P&F81l4G0Fc8G08FG08FG08Fc8^P&F8 , ~3.17!
en-
he
ge

e
r-
which is diagrammatically depicted in Fig. 10.
We note that the momentum shell integration meth

combined with a perturbative expansion is essentially a n
linear procedure leading to a more general Fokker-Pla
equation involving higher order force fields as shown in F
10, where the last diagram corresponds to two force fieldF
coupling to the distributionP. More importantly, for deriv-
ing renormalization-group equations we identify the sa
self-energy, vertex, and force corrections as in primitive p
turbation theory but now evaluated within the sho
wavelength shell. In this manner the elimination of the sho
wavelength degrees of freedom enters in the Fokker-Pla
equation for the remaining long-wavelength degrees of fr
dom.

C. Renormalization-group equations

While the general expression to first loop order for t
self-energy, vertex, and force correlation corrections and
d
n-
k
.

e
r-

t-
ck
e-

e

general renormalization-group equations are given in App
dix B, we here present a detailed derivation of t
renormalization-group equations in the isotropic short-ran
case.

Disregarding the two-force term in Eq.~3.17!, which is of
higher order ink and therefore becomes irrelevant in th
long-wavelength limit, we obtain the renormalized Fokke
Planck equation

@2 iv1D1km1~D21dD2!k2#P~k,v!

5P0~k!1~l1dl!E ddp

~2p!d
~2 i !k•F~k2p!P~p,v!

~3.18!

and force correlation function

^Fa~k!Fb~p!&F5~D1dD!dab~2p!dd~k1p!,
~3.19!
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both valid for wave numbers in the interval for 0,k,p
,e2 l .

The first step in deriving renormalization-group equatio
is then to rescale the wave number range to 0,k,p,1 and
in this manner compensate for the eliminated degrees of f
dom. Rescaling at the same time frequency, probability
tribution, and force field, according to

k85kel , ~3.20!

v85vea~ l !, ~3.21!

P8~k8,v8!5P~k,v!e2a~ l !, ~3.22!

F8~k8!5F~k!e2b~ l !, ~3.23!

wherea( l ) andb( l ) are to be determined subsequently, w
thus obtain the renormalized Fokker-Planck equation

@2 iv81D18~ l !k8m1D28~ l !k82#P8~k8,v8!

5P08~k8!1~2 i !l8~ l !E ddp8

~2p!d
k8•F8~k82p8!P8~k8,v8!

~3.24!

and force correlation function

^Fa8~k8!Fb8~p8!&F85D8~ l !dab~2p!dd~k81p8!
~3.25!

for wave numbersk8 andp8 in the original range 0,k8,p8
,1; note thatP0(k)5P08(k8). We have here introduced th
scale-dependent parametersD18( l ), D28( l ), l8( l ), andD8( l )
given by

D18~ l !5D1e2 lm1a~ l !, ~3.26!

D28~ l !5@D21dD2~ l !#e22l 1a~ l !, ~3.27!

l8~ l !5@l1dl~ l !#e2 l ~11d!1a~ l !1b~ l !, ~3.28!

D8~ l !5@D1dD~ l !#edl22b~ l !. ~3.29!

Note that the correctionsdD2( l ), dl( l ), anddD( l ) depend
on the scale parameterl since they are evaluated in the sho
wavelength shelle2 l,k,1.

In order to allow for an iteration, the renormalizatio
group equations are recast in differential form by consider
an infinitesimal scale parameterl and expanding the right
hand sides of Eqs.~3.26!–~3.29!. Defining

a~ l !5E
0

l

z~e8!dl8, ~3.30!

b~ l !5E
0

l

u~ l 8!dl8, ~3.31!

and noting from Eqs.~3.8!, ~3.10!, and ~3.12! evaluated on
the shellk,p51 that
s

e-
-

g

dD2}
1

2

Sd

~2p!d

1

d

D1~d2m!1D2~d22!

@D11D2#2
l2D l ,

~3.32!

dl}2
Sd

~2p!d

1

d

l3D

@D11D2#2
l , ~3.33!

dD}
Sd

~2p!dS 12
1

dD l2D

@D11D2#2
l . ~3.34!

We arrive at the differential renormalization-group equatio

dD1

dl
5~z2m!D1 , ~3.35!

dD2

dl
5~z22!D21A

D1~d2m!1D2~d22!

@D11D2#2
l2D,

~3.36!

dl

dl
5~z1u212d!l22A

l3D

@D11D2#2
, ~3.37!

dD

dl
5~d22u!D12A~d21!

l2D

@D11D2#2
, ~3.38!

where A5(1/2d)Sd /(2p)d is a geometrical factor,
Sd52pd/2/(d/221)! @cf. Eq. ~2.1!#.

In conformity with Ref.@26# we have included a vertex
couplingl. However, sincel2 is always associated withD
in the diagrammatic expansion, the inclusion of bothl and
D is essentially superfluous and we can for example sel
51 and discuss the coupling to the force field by means oD
alone @18#. Thus assumingdl( l )/dl50 in Eq. ~3.37! and
solving foru( l ), we finally obtain the renormalization-grou
equations

dD1

dl
5~z2m!D1 , ~3.39!

dD2

dl
5~z22!D21A

D1~d2m!1D2~d22!

@D11D2#2
D,

~3.40!

dD

dl
5~2z2d22!D22A~32d!

D2

@D11D2#2
, ~3.41!

which provides the basis for the discussion of the scal
properties of Le´vy flights in an isotropic short-range forc
field.

Deferring details to Appendixes B and C we obtain in
precisely analogous manner the renormalization-group eq
tions forD1, D2, D1

L , D2
L , D1

T , andD2
T , in the case of Le´vy

flights in a general force field with range characterized by
indicesaL andaT :

dD1

dl
5~z2m!D1 , ~3.42!
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dD2

dl
5~z22!D21A

~D1
L1D2

L!@D1~22m2d!1D2~2d!#

@D11D2#2

1A
~D1

T1D2
T!@D1~2d22!1D2~2d22!#

@D11D2#2

1A
D2

L~d2aL!~D11D2!

@D11D2#2
, ~3.43!

dD1
L

dl
5~2z2d22!D1

L24A
D1

L1D2
L

@D11D2#2
D1

L

1A~2d22!
~D1

T1D2
T!~D1

L1D2
L!

@D11D2#2
, ~3.44!

dD1
T

dl
5~2z2d22!D1

T24A
D1

L1D2
L

@D11D2#2
D1

T

1A~2d22!
~D1

T1D2
T!~D1

L1D2
L!

@D11D2#2
, ~3.45!

dD2
L

dl
5~2z222aL!D2

L24A
D1

L1D2
L

@D11D2#2
D2

L , ~3.46!

dD2
T

dl
5~2z222aT!D2

T24A
D1

L1D2
L

@D11D2#2
D2

T . ~3.47!

IV. DISCUSSION

We now turn to a discussion of the renormalization-gro
equations derived in Sec. III. Equations~3.39!–~3.41! de-
scribe the scaling properties in the isotropic short-range c
whereas Eqs.~3.42!–~3.47! account for the general case
anisotropic force fields with short- or long-range corre
tions. We discuss the isotropic short-range and long-ra
cases in some detail and summarize the results for the a
tropic cases, deferring details to the Appendixes.

We notice immediately a general feature of t
renormalization-group equations~3.42!–~3.47!: The require-
ment that the anomalous diffusion coefficientD1, character-
izing the amplitude of the Le´vy term D1km, stays constan
under renormalization, i.e.,dD1( l )/dl50 in Eq. ~3.42!, im-
mediately implies that the dynamic scale-dependent ex
nentz( l ) locks onto the scaling indexm, i.e.,

z5m. ~4.1!

Consequently, in the case of Le´vy flights in a weak random
force field the long time scaling behavior is entirely co
trolled by the leading anomalous Le´vy term D1km and the
dynamic exponentz locks ontom. In other words, the ran
dom force field has no influence on the Le´vy flights. The
intrinsic long-range superdiffusive behavior, that is, the
currence ofrare events, enables the walker to escape t
inhomogeneous pinning environment and the long time
p

e,

-
e

so-

o-

-

-

havior is the same as in the pure case. Below, we substan
this claim in more detail when we discuss the isotropic sho
range case.

A. The isotropic short-range case

In the case of an unconstrained short-range force field
renormalization-group equations are given by Eqs.~3.39!–
~3.41!. They describe how the parameters in the renorm
ized long-wavelength Fokker-Planck equation~3.24! and
force correlation function~3.25! change as we differentiably
average out the short-wavelength degrees of freedom in
shell e2 l,k,1, characterized by the scale parameterl .

1. Renormalization-group flow and fixed-point structure

Requiring a constant anomalous diffusion coefficientD1
under renormalization, i.e.,dD1( l )/dl50, Eq.~3.39! implies
that the dynamic scale-dependent exponentz( l ) locks onto
m, z( l )5m, and we obtain the renormalization-group equ
tions for D2 andD,

dD2

dl
5~m22!D21A

D1~d2m!1D2~d22!

@D11D2#2
D, ~4.2!

dD

dl
5eD22A~32d!

D2

@D11D2#2
, ~4.3!

e5dc12d, ~4.4!

dc152m22. ~4.5!

Equations ~4.2! and ~4.3! determine the renormalization
group flow in theD22D parameter space. We have intr
duced the parametere and dc1 is the critical dimension.
Equations ~4.2! and ~4.3! determine the renormalization
group flow in theD22D parameter space.

Above the critical dimension fore,0, i.e., d.dc152m
22 or m,11d/2, Eqs. ~4.2! and ~4.3! have the trivial
Gaussian fixed pointsD2* 50 andD* 50, indicating that~i!
the subleading diffusion term,D2k2, scales to zero compare
with the leading Le´vy term and~ii ! the quenched disorder
characterized byD, scales to zero and thus isirrelevant. The
effective long-wavelength Fokker-Planck equation takes
form

~2 iv1D1km!P~k,v!5P0~k! ~4.6!

and for a particle at the origin att50, i.e., P0(k)51, we
obtain the scaling expressions in Eqs.~2.5! and ~2.6! with
dynamic exponentz5m. Clearly, the physics is characte
ized by the interplay between the dimensiond of configura-
tion space and the indexm specifying the tail of the Le´vy
distribution. Form,11d/2, the long-range Le´vy steps pre-
dominate and control the scaling behavior.

Below the critical dimension for e.0,
i.e., d,dc152m22 or 11d/2,m,2, we obtain, solving
Eqs.~4.2! and~4.3! for dP2 /dl50 anddD/dl50, the non-
trivial fixed point values forD2 andD:

D2* 52D1

~m2d!e

~22m!~622d!1~22d!e
, ~4.7!
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D* 5e
~D11D2* !2

2A~32d!
. ~4.8!

The fixed pointD2* indicates that the subleading diffusiv
term D2k2 yields a contribution compared to the Le´vy term
D1km. The fixed point value of the diffusion coefficientD2*
is negative since the pinning environment created by the
dom force field reduces the ordinary diffusion coefficie
from its valueD2* 50 for m,11d/2. The emergence of th
fixed pointD* shows that ford less than the critical dimen
sion dc152m22 the quenched disorder in the lon
wavelength Fokker-Planck equation becomesrelevant. In
Fig. 11 we have shown the critical dimensiondc1 as a func-
tion of the scaling indexm. For m52 we have the Brownian
casedc152; for d,m,2 the critical dimensiondc1 depends
linearly on m. Note thatdc150 in the ballistic case form
51. The lined5dc25m delimits the regiond,dc2 where
naive perturbation theory fordD2 diverges as discussed i
Sec. III.

In the Brownian casem→2 it follows from Eq.~4.7! that
D2*→2D1 so that the Le´vy termD1km precisely cancels the
diffusive termD2k2 in the Fokker-Planck equation~3.2!; this
is consistent with the fact that there is no correction to fi
loop order or more precisely to first order ine5dc12d in
the Brownian case@18#. In Fig. 12 we have plotted the po
sition of the fixed point (D* ,D2* ) as a function of the scaling
index m for e5dc12d.0 or 11d/2,m,2.

2. Scaling properties

Introducing the notation P(k,v,D1 ,D2 ,D)
5^P(k,v)&F , the scaling properties of^P(k,v)&F are deter-
mined in the long-wavelength limit by noting that^P(k,v)&F
can equally well be computed from the original Fokke
Planck equation~3.2! as from the renormalized equatio
~3.24!. From the explicit scaling definitions in Eqs.~3.20!–
~3.23! we thus obtain the homogeneity relation,

P~k,v,D1 ,D2 ,D!5ea~ l !P„kel ,vea~ l !,D1~ l !,D2~ l !,D~ l !…,
~4.9!

FIG. 11. Plot of the critical dimensiondc1 as a function of the
scaling indexm. For m52 we have the Brownian casedc152; for
1,m,2 the dimensiondc1 depends linearly onm. The ballistic
casem51 is attained fordc150. The critical dimensiondc152m
22 and the lined5m separate the regions I,II and II,III, respe
tively. In I the diffusion coefficientD2 vanishes and the disorder
irrelevant, in II D2 diverges and disorder isirrelevant, and in III D2

diverges and disorder becomesrelevant.
n-
t

t

which determines hoŵP(k,v)&F varies as we average ou
the short-wavelength degrees of freedom parametrized by
scale parameterl . Similarly, we can derive a homogeneit
relation for the wave number and frequency-dependent
fusion coefficientD2(k,v,D1 ,D2 ,D), defined according to
the Dyson equation~3.4! andk2D2(k,v)52S(k,v). From
Eq. ~4.9! we thus obtain

D2~k,v,D1 ,D2 ,D!

5e2l 2a~ l !D2„kel ,vea~ l !,D1~ l !,D2~ l !,D~ l !….

~4.10!

In the vicinity of the fixed point (D* ,D* ), i.e., for largel ,
we have, setting from Eqs.~3.30! and ~4.1! a( l )5m l and
choosing wave numbersk such thatkel;1, the scaling
forms

P~k,v,D1 ,D2 ,D!5k2mL~k/v1/m,D1 ,D2* ,D* !,
~4.11!

D2~k,v,D1 ,D2 ,D!5km22M ~k/v1/m,D1 ,D2* ,D* !,
~4.12!

where L and M are scaling functions. Making use of Eq
~3.1! we also have

P~r,t,D1 ,D2 ,D!5utu2d/mG~r /utu1/m,D1 ,D2* ,D* !,
~4.13!

similar to the scaling form in Eq.~2.6! in the absence of the
force field, and we infer as in Sec. II a dynamic exponenz
equal to the Le´vy scaling indexm, i.e., z5m.

Above the critical dimension, i.e., fore,0 or d.dc1

52m22, we have the Gaussian fixed point (D2* ,D* )
5(0,0) and we infer from Eq.~4.6! the complex scaling
function

L~x,D1 ,0,0!5
ixm

iD 1xm11
. ~4.14!

3. Scaling relations and long time tails

Using the matching procedure@26,43,45#, we can also
derive scaling relations for the wave number frequen
dependent diffusion coefficientD2(k,v). Expanding the

FIG. 12. Plot of the fixed point (D* ,D2* ) as a function of the
scaling indexm for 11d/2,m,2.
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PRE 58 1701LÉVY FLIGHTS IN QUENCHED RANDOM FORCE FIELDS
renormalization-group equations~4.2! and~4.3! to first order
in e about the fixed point (D* ,D2* ) and definingD( l )
5D* 1dD( l ) andD2( l )5D2* 1dD2( l ), the linearized equa
tions take the form ddD2 /dl52(22m)dD21A@(d
2m)/D1#dD andddD/dl52ueudD with solutions

dD2~ l !5FdD2
01A

dD0

D1
Ge2~22m!l2A

dD0

D1
e2ueu l ,

~4.15!

dD~ l !5dD0e2ueu l . ~4.16!

Here,dD05dD(0) anddD2
05dD2(0) and Eqs.~4.15! and

~4.16! hold both above and below the critical dimensiondc1.
Sincez( l ) is locked on tom and suppressing the dependen
on D1, we obtain from Eq.~4.10!

D2~k,v,D2 ,D!5e~22m!lD2„kel ,vem l ,D2* 1dD2~ l !,D*

1dD~ l !…, ~4.17!

wheredD2( l ) anddD( l ) are given by Eqs.~4.15! and~4.16!.
In the long-wavelength limitk→0 and choosingl such

that vem l.1 and from Appendix B,D2(0,1,D2 ,D)}D, we
obtain, inserting Eq.~4.16!, the scaling expression

D2~0,v,D2 ,D!}v2~22m!/m@D* 1dD0v ueu/m#.
~4.18!

Above the critical dimension, i.e., ford.dc152m22 or e
,0, D* 50 and we have

D2~0,v,D2 ,D!}dD0v~d2dc2!/dc2, ~4.19!

where we have introduced the other critical dimension

dc25m. ~4.20!

In the low-frequency limitv→0, the coefficientD2 vanishes
for d.dc2 and diverges fordc1,d,dc2. This behavior is
consistent with our remarks in Sec. III and clarifies the n
ture of the divergence. In fact,dc25m plays the role of a
second critical dimension controlling the behavior of t
subleading diffusion coefficientD2 and supports the heuris
tic argument by Bouchaudet al. in @27#. In the Brownian
casem52, the two critical dimensions coincide.

Below the critical dimension,d,dc1 or e.0, D* .0
and we have the leading behavior

D2~0,v,D2 ,D!}D* v2~22dc2!/dc2, ~4.21!

which shows divergent behavior in the low-frequency lim
From D2(t)5*exp(2ivt)D2(v)dv/2p we finally obtain

the algebraic long time tails for the time-dependent diffus
coefficient:

D2~0,t,D2 ,D!}t2d/dc2 for d.dc1 , ~4.22!

D2~0,t,D2 ,D!}t2dc1 /dc2 for d,dc1 . ~4.23!

In a similar way we can extract the behavior
D2(k,v,D2 ,D) in the long-wavelength limit. Settingv50
in Eq. ~4.17! and choosingl such thatkel.1, we obtain
-

n

D2~k,0,D2 ,D!}k2~22m!@D* 1dD0kueu#, ~4.24!

i.e.,

D2~k,0,D2 ,D!}dD0kd2dc2 for d.dc1 , ~4.25!

D2~k,0,D2 ,D!}D* k2~22dc2! for d,dc1 . ~4.26!

For d.dc2 , D2 vanishes in the long-wavelength limitk
→0; for d,dc2 , D2 is divergent, in accordance with ou
previous discussion.

The spatial dependence is inferred fromD2(r)
5*exp(ik•r)D2(k)ddk/(2p)d and we derive the algebrai
long-range fall-off

D2~r,0,D2 ,D!}r dc222d for d.dc1 , ~4.27!

D2~r,0,D2 ,D!}r 22d2d2c for d,dc1 . ~4.28!

In Fig. 11 the lined5dc2, the second critical dimension
delimits the regions for the behavior ofD2. For d
.dc2 , D2 converges; ford,dc2 , D2 is divergent.

It is instructive to consider the renormalization-grou
flow in the D-D2 plane about a fixed point in more deta
This discussion is carried out in Appendix D. Another issu
in the analysis of the renormalization-group equatio
~3.38!–~3.40! we chose to keep the Le´vy coefficientD1 fixed
under a renormalization-group transformation. This requ
ment leads, among other results, toz5m, which is one of the
main conclusions of the present work. Clearly, keepingD1
fixed is an arbitrary choice and our scaling results can
depend on this choice. This point is discussed in App
dix E.

B. The isotropic long-range case

We now turn to a discussion of the case of Le´vy flights in
an isotropic long-range random force field characterized b
fall-off exponenta. The case of Brownian motion in an a
gebraic long-range field has been discussed by severa
thors @4,40,27,49–52# both to first and second loop orde
The main conclusion here is that provided the force fi
falls off slowly enough, the long-range force correlations
terfere with the Brownian walk and give rise to anomalo
diffusion in any dimension. For comparison, we have su
marized the Brownian case in Appendix F.

Keeping as usualD1 fixed by lockingz onto m, we ex-
tract from the general equations~3.42!–~3.47! the appropri-
ate renormalization-group equations forD2 andD25D,

dD2

dl
5~m22!D21A

D1~2d2m2a!1D2~2d222a!

@D11D2#2
D,

~4.29!

dD

dl
5eD24A

D2

@D11D2#2
, ~4.30!

where we have introduced the expansion parameter

e5ac12a. ~4.31!
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Here,ac152m22 has the same value as the critical dime
sion defined in Eq.~4.5! for the short-range case. In th
present context,ac1, of course, plays the role of a critica
fall-off exponent for the long-range force correlations.

The analysis now proceeds precisely as in the short-ra
case. Fore,0, i.e., a.ac152m22 or m,11a/2, we ob-
tain the trivial Gaussian fixed pointsD2* 50 and D* 50,
showing that~i! the subleading diffusion termD2k2 scales to
zero compared with the leading Le´vy term and ~ii ! the
quenched disorder, characterized byD, scales to zero and
thus is irrelevant. The effective long-wavelength Fokke
Planck equation takes the form in Eq.~4.6! and we obtain the
scaling expressions in Eqs.~2.5! and~2.6! with dynamic ex-
ponentz5m. In contrast to the short-range case, where
physics is controlled by the interplay between the dimens
d of configuration place and the Le´vy index m, the fall-off
exponenta replacesd in the long-range case fora,d. For
a.ac1 or m,11a/2, the long-range Le´vy steps predomi-
nate and determine the scaling behavior.

For e.0, i.e.,a,ac1 or m.11a/2, we obtain the non-
trivial fixed point values, D2* 52D1(2d2m2a)e/@4(m
22)1(2d222a)e# and D* 5e(D11D2* )2/4A, indicating
that the subleading termD2k2 yields a contribution com-
pared to the Le´vy termD1km and that the quenched disord
becomesrelevant. In the Brownian casem→2, D2*→2D2,
i.e., the Lévy termD1km precisely cancels the diffusive term
D2k2 in the Fokker-Planck equation~3.2!.

To leading order in e we have the fixed points
(D2* ,D* )5(0,0) for e,0 and the fixed pointsD2* 5e@(2d
2m2a)/4(22m)#D1 andD* 5eD1/4A for e.0. Similarly,
in the vicinity of either fixed point the linearize
renormalization-group equationsddD2 /dl52(22m)dD2
1A@(2d2m2a)/D1#dD andddD/dl52ueudD with solu-
tions of the same form as in Eqs.~4.15! and ~4.16!, i.e.,

dD2~ l !5FdD2
02A

3m22d22

22m

dD0

D1
Ge2~22m!l

2A
3m22d22

22m

dD0

D1
e2ueu l , ~4.32!

dD~ l !5dD0e2ueu l . ~4.33!

For the distribution functionP(k,v,D1 ,D2 ,D) and diffusion
coefficient D2(k,v,D1 ,D2 ,D) we obtain again for largel
and choosingkel.1 the scaling forms Eqs.~G20! and
~G21!. We also obtain the scaling form in Eq.~4.13! for P,
implying that the dynamic exponentz locks ontom.

As in the short-range case, the main conclusion is tha
the case of Le´vy flights in a weak isotropic long-range forc
field, the long time scaling behavior is entirely controlled
the leading anomalous Le´vy term D1km. The random force
field does not influence the Le´vy flights. The long-range su
perdiffusive behavior enables the walker to escape the in
mogeneous pinning environment and the long time beha
is the same as in the pure case.

For e,0, i.e., d.a.ac1, we have the Gaussian fixe
point (D2* ,D* )5(0,0) and we obtain in particular the com
plex scaling function in Eq.~4.14! for P(k,v). Implementing
the matching procedure as in the short-range case, we o
-

ge

e
n

in

o-
or

ain

to lowest order inD Eqs. ~4.18! and ~4.24!. For e,0 or d
.a.ac1 , D* 50 and we have

D2~0,v,D2 ,D!}dD0v~a2ac2!/ac2, ~4.34!

D2~k,0,D2 ,D!}dD0ka2ac2, ~4.35!

whereac25dc25m is the second critical fall-off exponent
In the low-frequency limitv→0 or long-wavelength limit
k→0, D2 vanishes fora.ac2 and diverges fora,ac2. This
behavior is in accordance with the naive perturbation the
discussed in Sec. III and in Appendix B; introducing a for
correlation D;pa2d in the integrand in Eq.~3.8! for the
correctiondD2, we obtain a convergent contribution fora
.ac2 and a divergingdD2 for a,ac2.

For e.0 or a,ac1, D* Þ0 and we obtain Eqs.~4.21!
and ~4.26! diverging in the low-frequency and long
wavelength limits, respectively.

Finally, we obtain for the temporal and spatial behavior
D2 for e,0

D2~0,t,D2 ,D!}t2a/ac2, ~4.36!

D2~r,0,D2 ,D!}r ac22a2d, ~4.37!

and fore.0 Eqs.~4.23! and ~4.28!.
The scaling properties in the isotropic long-range case

compared to the short-range case are conveniently sum
rized in Fig. 13 and Fig. 14. In Fig. 13 we have plotted t
fall-off exponent as a function ofm. The linesa5ac2 and
a5ac1 delimit three regions I, II, and III. In I, the diffusion
coefficientD2 vanishes and the disorder isirrelevant; in II,
the diffusion coefficientD2 diverges and the disorder isir-
relevant; and in III, D2 diverges and disorder becomesrel-
evant. We note that Fig. 13 is identical to Fig. 11 with th
dimensiond replaced by the exponenta. In Fig. 14 in a plot
of the exponenta versus the dimensiond we have contrasted
the long-range case to the short-range case. The short-
long-range cases are delimited by the lined5a. For a.d,
we have the short-range case; fora,d, the long-range case
~see Sec. III!. In region I, delimited bya5ac1 andd5dc1,
D2 diverges and the disorder isrelevant; in region II, delim-
ited by a5ac2 andd5dc2, D2 diverges and the disorder i

FIG. 13. Plot of the fall-off exponent as a function of the scali
indexm. Form52 we have the Brownian case. The linesa5m and
a52m22 separate the regions I,II and II,III, respectively. In I th
diffusion coefficientD2 vanishes and the disorder isirrelevant, in II
D2 diverges and disorder isirrelevant, and in III D2 diverges and
disorder becomesrelevant.
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irrelevant; and in region I,D2 vanishes and disorder isirrel-
evant. In the Brownian casem52 and region II vanishes; th
divergence ofD2 coincides with the disorder becoming re
evant ford52 in the short-range case anda52 in the long-
range case; see@27#. In Appendix B we briefly summarize
the relevant aspects of the renormalization-group flow in
D-D2 plane.

In the case of a general anisotropic force field, the fix
point structure becomes more complicated and we encou
the same features as in the Brownian case, Refs.@4# and@27#.
The analysis nevertheless proceeds as in the isotropic
and we therefore defer the discussion to Appendix G~the
short-range case! and Appendix H~the long-range case!.

V. SUMMARY AND CONCLUSION

In the present paper we have discussed Le´vy flights in d
dimensions in a variety of quenched force fields with fall-o
exponenta. The main conclusion of the paper is that t
long-range characteristics of the random motion, charac
ized by the dynamic exponentz, is essentially not influenced
by the quenched force field and the exponentz locks onto the
step indexm in all cases. In other words, the long-ran
character of the Le´vy steps enables the walker to escape
inhomogeneous pinning environment created by
quenched force field.

This behavior is entirely different from the case of ord
nary Brownian motion where the dynamic exponentz is en-
hanced, corresponding to subdiffusive behavior ford,2 in
the case of short-range forces and fora,2 in the case of
long-range forces.

Although the dynamic exponentz is unaffected by the
quenched environment, the phenomenon is still character
by a critical dimensiondc1 in the short-range case and
critical fall-off exponentac in the long-range case. The crit
cal parameters delimit the relevance of the quenched fo
field. For d.dc152m22 in the short-range case anda

FIG. 14. Plot ofa versusd. The linea5d delimits the short-
range and long-range regions. In region III fora.m andd.m, the
diffusion coefficientD2 vanishes and the disorder isirrelevant, in
region II for m.d.2m22 andm.a.2m22, D2 diverges and
disorder isirrelevant, and in region III for 0,d,m and 0,a,m,
D2 diverges and disorder becomesrelevant.
e
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.dc152m22 in the long-range case, the force correlatio
scale to zero, indicating that the quenched background d
not influence the long-range walk characteristics. We n
that in the Brownian casem52 and, consequently,dc152 in
the short-range case, coinciding with the dimension wh
the Brownian walk becomes transparent, i.e., with a fin
probability of revisiting a site and thus becoming sensitive
the force correlations.

For d,dc1 or a,ac , the strength of the force correla
tions characterized byD scales to a finite~fixed point! value,
showing the relevance of the quenched background. In
Brownian case this gives rise to a change of the dyna
exponent z, unlike the Lévy case wherez remains un-
changed.

A further aspect of the Le´vy case is the appearance of
second critical parameter:dc15m in the short-range case an
ac5m in the long-range case. These parameters delimit
behavior of the subleading diffusive term characterized
the ordinary diffusion coefficientD2, which, of course, in the
Brownian case is the leading term. Ford.dc1 or a.ac the
wave-number-dependent diffusion coefficientD2(k) van-
ishes in the long-wavelength limitk→0; for d,dc1 or a
,ac , correspondingly,D2(k) diverges for k→0. In the
Lévy case this behavior is subleading and does not affect
leading term characterized by the~unchanged! dynamic ex-
ponentz. The above behavior is illustrated in Figs. 11, 1
and 14.

In the anisotropic short-range and long-range cases
encounter as in the Brownian case a more complicated fi
point and renormalization-group flow structure, depicted
Figs. 16 and 17. However, as mentioned above, the expo
z remains locked ontom and we find that the behavior of th
subleading diffusion coefficientD2 is the same as in the
isotropic case.

In Table I we have summarized the behavior ofD2 in the
various cases.
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APPENDIX A: THE FOKKER-PLANCK EQUATION
FOR LÉVY FLIGHTS

The usual derivation of the Fokker-Planck equati
@45,54# depends in an essential way on the existence of
moments of the distribution. Precisely this assumpt

TABLE I. Table of the behavior of the wave number, spac
frequency-, and time-dependent subleading ordinary diffusion c
ficient in the case of short-range and long-range force correlat
in the quenched background.

D2(k) D2(r) D2(v) D2(t)

d.2m22 kd2m r m22d v (d2m)/m t2d/m

d,2m22 km22 r 22d2m v (m22)/m t2(2m22)/m

a.2m22 ka2m r m2d2a v (a2m)/m t2a/m

a,2m22 km22 r 22d2m v (m22)/m t2(2m22)/m
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breaks down for Le´vy flights for a step size distribution with
f ,2 and we must reconsider the derivation of the associa
Fokker-Planck equation. In Sec. II we gave a heuristic d
vation of the Fokker-Planck equation based on the motio
the absence of a force field. Here we derive the Fokk
Planck equation generalizing the standard procedure an
laxing the assumption of finite moments. Adapting the d
cussion in Ref.@54# we define the functional

I 5E R~r2!
]P~r2ur1 ,t !

]t
ddr 2 , ~A1!

where P(r2ur1 ,t) is the conditional probability distribution
andR(r) is a generator function. Using the ‘‘chain rule’’ fo
a Markovian stochastic process,

P~r2ur1 ,t !5E P~r2ur,t1!P~rur1 ,t2t1!ddr , ~A2!

and expanding in Fourier modes,R(r)5(ke
ik•rRk , we ob-

tain, replacing]P/]t by @P(t1Dt)2P(t)#/Dt,

I 5(
k
E ddr 2eik•r2Rk

]P~r2ur1 ,t !

]t

5(
k
E ddreik•rRkF E ddr 2

eik•~r22r!21

Dt
P~r2ur,Dt !G

3P~rur1 ,t !. ~A3!

In order to evaluate
d
i-
in
r-
re-
-

E ddr 2

eik•~r22r!21

Dt
P~r2ur,Dt !5K eik•[ r~Dt !2r~0!]21

Dt L
~A4!

we invoke the Langevin equation for Le´vy flights ~2.11!,
dr/dt5F(r)1h with incremental solution

r~Dt !2r~0!5F~r!Dt1hDt. ~A5!

Inserting Eq.~A5! in Eq. ~A4!, expanding and using the re
sult ^eik•hDt21&52const3kmDt for a Lévy distribution
@cf. Eqs. ~2.3! and ~2.4!# we obtain ^(eik•[F(r)Dt1hDt]

21)/Dt&.2const3km1 ik•F(r), which, inserted in Eq.
~A3! and requiring it to hold for any variation ofR, yields
the Fokker-Planck equation for Le´vy flights ~in momentum
space!,

]P~k,t !

]t
52const3kmP~k,t !2 ik•(

p
F~k2p!P~p,t !.

~A6!

APPENDIX B: SELF-ENERGY, VERTEX, AND FORCE
CORRECTIONS TO FIRST LOOP ORDER

Here we evaluate the self-energy, vertex, and force c
rections to lowest order for Le´vy flights in a general aniso
tropic force field using the diagrammatic rules and diagra
in Sec. III.

The self-energy correction is given by the diagrams
Fig. 7. S(k,v) splits up in longitudinal and transverse co
tributions, i.e., S(k,v)5SL(k,v)1ST(k,v). For SL we
have
ires that
hells
SL~k,v!52lL
2E ddp

~2p!d
DL~k/22p!

k•~k/22p!~k/22p!•~k/21p!

~k/22p!2
G0~k/21p,v!. ~B1!

In order to extract the leading contribution toO(k2) we first symmetrize Eq.~B1! by replacingp by 2p and, furthermore,
expanding G0

21(k/26p,v) and DL(k/26p) for small k, G0
21(k/26p,v)5G0

21(p,v)6(p•k/2)(mD1pm2212D2) and
DL(k/26p)5DL(p)6(p•k/2)(aL2d)paL2d22, we obtain toO(k2)

SL~k,v!5
1

2
k2

lL
2

d E ddp

~2p!d
$@~d22!G0

21~p,v!1~mD1pm12D2p2!#DL~p!1G0
21~p,v!D2

L~aL2d!paL2d%G0~p,v!2.

~B2!

Similarly, we find forST(k,v) to O(k2),

ST~k,v!52
1

2
k2

lT
2

d E ddp

~2p!d
~2d22!DT~p!G0~p,v!. ~B3!

In the static limit v→0 and in the isotropic short-range case,lL5lT5l, and DL,T(p)5D, we obtain in particular the
expression yielding Eq.~3.8!,

S~k,0!52
1

2
k2

l2

d
DE ddp

~2p!d

D1~d2m!pm1D2~d22!p2

@D1pm1D2p2#2
. ~B4!

In the context of the momentum shell integration method discussed in Sec. III, the dilution of degrees of freedom requ
the internal momentak/21p andk/22p of the propagator and force contraction, respectively, must lie in the momentum s
e2 l,uk/21pu,1 ande2 l,uk/22pu,1. We notice that this assignment is invariant under the symmetrizationp→2p per-
formed in order to extract the leadingk2 correction toS. On the shell we thus obtain forS(k,0) in Eq. ~B4! for small l ,



Eq.
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S~k,0!52
1

2
k2l2D

Sd

~2p!d

1

d

D1~d2m!1D2~d22!

@D11D2#2
l , ~B5!

whereSd52pd/2/(d/221)! @cf. Eq. ~2.1!#, leading to Eq.~3.32! for the correctiondD2 to the diffusion coefficient.
In a completely similar manner we obtain in the general case on the shellp51,

S~k,0!5
1

2
k2

Sd

~2p!d

1

d

lL
2@~d1m!D1~D1

L1D2
L!1~aL2d!~D11D2!D2

L#2lT
2~2d22!~D11D2!~D1

T1D2
T!

@D11D2#2
l . ~B6!

The vertex corrections are given by the diagrams in Fig. 8. In the isotropic short-range case, the correction is given in~3.9!
anddl in Eq. ~3.10! follows directly, i.e., no symmetrization is required here since the correction in Eq.~3.9! is already of
orderk. Focusing on the corrections tolL andlT , the calculation is also quite simple in the general case. We obtain

dlT52lTlL
2 1

dE ddp

~2p!d
DL~p!G0~p,0!2, ~B7!

dlL52lL
3 1

dE ddp

~2p!d
DL~p!G0~p,0!, ~B8!

and on the shelle2 l,p,1,

dlT52lTlL
2 Sd

~2p!d

1

d

D1
L1D2

L

@D11D2#2
l , ~B9!

dlL52lL
3 Sd

~2p!d

1

d

D1
L1D2

L

@D11D2#2
l . ~B10!

The force corrections are given by the diagrams in Fig. 9. In the isotropic short-range case the results are given
~3.11! and~3.12!. In the general case, we obtain the correction to the vertex functionG(k,p,l,v) defined diagrammatically in
Fig. 6, introducing the tensors~dyadics! D̃L(k)5@kakb/k2#DL(k) and D̃T(k)5@dab2kakb/k2#DT(k),

G~k,p,l,v!52lL
2k•D̃L~ l!•p2lT

2k•D̃T~ l!•p

1lL
4E ddn

~2p!d
k•D̃L~n!•~p1 l2n!~k2n!•D̃L~ l2n!•pG0~k2n,v!G0~p1 l2n,v!

1lT
4E ddn

~2p!2
k•D̃T~n!•~p1 l2n!~k2n!•D̃T~ l2n!•pG0~k2n,v!G0~p1 l2n,v!

1lL
2lT

2E ddn

~2p!d
k•D̃L~n!•~p1 l2n!~k2n!•D̃T~ l2n!•pG0~k2n,v!G0~p1 l2n,v!

1lT
2lL

2E ddn

~2p!d
k•D̃T~n!•~p1 l2n!~k2n!•D̃L~ l2n!•pG0~k2n,v!G0~p1 l2n,v!

1lL
4E ddn

~2p!d
k•D̃L~n!•p~k2n!•D̃L~ l2n!•~p1n!G0~k2n,v!G0~p1n,v!

1lT
4E ddn

~2p!d
k•D̃T~n!•p~k2n!•D̃T~ l2n!•~p1n!G0~k2n,v!G0~p1n,v!

1lL
2lT

2E ddn

~2p!d
k•D̃L~n!•p~k2n!•D̃T~ l2n!•~p1n!G0~k2n,v!G0~p1n,v!

1lT
2lL

2E ddn

~2p!d
k•D̃T~n!•p~k2n!•D̃L~ l2n!•~p1n!G0~k2n,v!G0~p1n,v!. ~B11!
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In order to identify, for example, the correction toD1
T we choosek• l50 and take thel→0 limit. Using thatk•D̃L( l)•p

50, k•D̃T( l)•p5k•pDT( l), k•D̃T(n)•n50, andk•D̃L(n)•n5k•nDT(n), expression~B11! reduces considerably and we fin
the correction

dD1
T5lL

2S 12
1

dD E ddp

~2p!d
DT~p!DL~p!G0

2~p,0! ~B12!

and on the shelle2 l,p,1,

dD1
T5lL

2 Sd

~2p!dS 12
1

dD ~D1
T1D2

T!~D1
L1D2

L!

@D11D2#2
l . ~B13!

Similarly, we find the correction toDL by choosingk5 l,

dD1
L5dD1

T , ~B14!

i.e., the force corrections in the longitudinal and transverse cases are identical.

APPENDIX C: RENORMALIZATION-GROUP EQUATIONS IN THE CASE OF A GENERAL FORCE FIELD

Here we derive the renormalization-group equations for a general force field to first loop order following the proce
Sec. III. Including the corrections toD2 , lL , lT , DL, andDT we obtain the renormalized Fokker-Planck equation and fo
correlations@cf. Eqs.~3.18! and ~3.19!#,

@2 iv1D1km1~D21dD2!k2#P~k,v!5P0~k!1~lL1dlL!E ddp

~2p!d
~2 i !k•E~k2p!P~p,v!1~lT1dlT!

3E ddp

~2p!d
~2 i !k•B~k2p!P~p,v!, ~C1!

^Ea~k!Eb~p!&F5@DL~k!1dDL~k!#Fkakb

k2 G ~2p!dd~k1p!, ~C2!

^Ba~k!Bb~p!&F5@DT~k!1dDT~k!#Fdab2
kakb

k2 G ~2p!dd~k1p!, ~C3!
w

on

t

where k and p after the momentum shell integration no
range in the interval 1,k,p,e2 l . Renormalizing wave
numbers, frequency, and distribution as in Eqs.~3.20!–~3.22!
and E and B according toE8(k8)5exp„2bL( l )…E(k) and
B(k8)5exp„2bT( l )…B(k), wherea and bL,T are given by
Eqs.~3.30! and~3.31! with u replaced byuL,T , we obtain a
renormalized Fokker-Planck equation and force correlati
of the same form as in Eqs.~3.24! and ~3.25!. Furthermore,
from the expressions in Eqs.~2.23! and~2.24! for DT(k) and
DL(k) we identify scale-dependent parameters and obtain
renormalization-group equations

D18~ l !5D1e2m l 1a, ~C4!

D28~ l !5~D21dD2!e22l , ~C5!

lL8~ l !5~lL1dlL!e2~11d!l 1a1bL, ~C6!

lT8~ l !5~lT1dlT!e2~11d!l 1a1bT, ~C7!
s

he

D1
L8~ l !5~D1

L1dD1
L!edl22bL, ~C8!

D2
L8~ l !5D2

Ledl22bL2 l ~aL2d!, ~C9!

D1
T8~ l !5~D1

T1dD1
T!edl22bT, ~C10!

D2
T8~ l !5D2

Tedl22bT2 l ~aT2d!, ~C11!

or in differential form Eqs.~3.42!–~3.47!. We have here
again fixed the vertex constants tolL,T51 by choosinguL

511d2z2lL
21dlL / l anduT511d2z2lT

21dlT / l .

APPENDIX D: THE RENORMALIZATION-GROUP FLOW
IN THE ISOTROPIC CASE

1. The isotropic short-range case

Eliminating l in Eqs. ~4.15! and ~4.16! and settingm
5dc2

ande5dc1
2d we obtain
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dD25FdD2
01A

dD0

D1
GF dD

dD0G ~22dc2
!/udc1

2du

2
A

D1
dD.

~D1!

In Fig. 15 we have depicted the renormalization-group fl
about the Gaussian fixed point (D* ,D2* )5(0,0) in the three
cases:~a! d.dc2, ~b! d5dc2, and ~c! dc2.d.dc1. In case
~a! for d.dc2

, corresponding to region I in Fig. 11, the fir

term in Eq. ~D1! dominates and near the fixed pointdD2

;@dD2
01AdD0/D1#@dD/dD0# (22dc2

)/udc1
2du, i.e., the trajec-

tories approach the fixed point with vertical slope except
the trajectories originating from the domain of initial valu
on the linedD2

052(A/D1)dD0, corresponding to the posi
tion of the nontrivial fixed point emerging belowdc1. In this
regime D2 vanishes as discussed above. In case~b! for d
5dc2

, the marginal case, we havedD25(dD2
0/dD0)dD and

the trajectories approach the fixed point with constant slo
i.e., the linear scaling regime depends onm and becomes
largest form5d, precisely the case where naive perturbat
theory or the scaling analysis above yield a divergentD2. In
case~c! for dc1,d,dc2, corresponding to region II in Fig
11, we havedD252(A/D1)dD. The trajectories now ap
proach the fixed point with a constant slope2A/D1, except
for trajectories withdD050 which lie on the lineD50.

2. The isotropic long-range case

Eliminating l in the renormalization-group equation
~4.32!–~4.33! we have

FIG. 15. Renormalization-group flow in theD-D2 plane about
the Gaussian fixed point (D* ,D2* )5(0,0). In case~a! d.m, case
~b! d5m, and case~c! dc1,d,m.
r

e,

n

dD25FdD2
01A

3m22d22

22m

dD0

D1
GF dD

dD0G ~22dc2!/uac1
2au

2A
3m22d22

22m
dD. ~D2!

Focusing on the flow about the Gaussian fixed po
(D* ,D2* )5(0,0), the discussion in the isotropic short-ran
case above applies withd replaced bya. For d.a.m, the
trajectories approach the fixed point with vertical slope e
cept for the trajectories originating from the domain of initi
values on the line dD2

052@A(3m22d22)/(2
2m)D1#dD0, corresponding to the position of the nontrivi
fixed point emerging below 2m22. In the marginal casem
5a the trajectories approach the fixed point with const
slope, i.e., the linear scaling regime depends onm and be-
comes largest form5a, precisely the case where naive pe
turbation theory or the scaling analysis above yield a div
gentD2. For a,m the trajectories approach the fixed poi
with constant slope2A(3m22d22)/(22m)D1, except for
trajectories withdD050, which lie on the lineD50. Figure
15 also applies in the long-range case withd replaced bya
but note that the slope2A/D1 is replaced by2A(3m22d
22)/(22m)D1.

APPENDIX E: KEEPING THE ORDINARY DIFFUSION
COEFFICIENT CONSTANT UNDER RENORMALIZATION

We here briefly repeat our renormalization-group analy
but now keeping the diffusion coefficientD2 fixed under
scaling. Limiting our discussion to the behavior near t
Gaussian fixed pointD* 50, we thus obtain from Eqs
~3.39!–~3.41! z52 and the renormalization-group equatio
dD1 /dl5(22m)D1 and dD/dl5(22d)D with solutions
D15D1

0exp„(22m) l … and D5D0exp„(22d) l …. From
the homogeneity relation~4.9! we have, settinga( l )
52l , P(k,v,D1 ,D)5e2l P(kel ,ve2l ,D1

0e(22m) l ,D0e(22d) l),
which forms the basis for our scaling analysis. Choos
kel.1 we deduce the scaling formP(k,v,D1 ,D)
5k22P(1,v/k2,D1

0km22,D0kd22). Note, however, that this
form does not implyz52 sinceD1

0km22 andD0kd22 diverge
in the long-wavelength limitk→0. In fact, choosingk such
that D0kd22!1 we obtain perturbativelyP(k,v,D1 ,D)
5k22(2 iv/k21D1

0km221D21const3D0kd22)21 or

P~k,v,D1 ,D!5~2 iv1D1
0km1D2k21const3D0kd!21

similar to our previous results and implying the dynamic
exponentz5m.

APPENDIX F: THE ISOTROPIC LONG-RANGE CASE
FOR BROWNIAN WALKS

Here we recover the well-known results in the Browni
case to first loop order@4,27#. The renormalization-group
equations in the isotropic long-range Brownian case are
tracted from the general equations~3.42!–~3.47! by setting
m52, D150, D25D, D1

L,T50, D2
L,T5D, andaL,T5a, i.e.,
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dD

dl
5~z22!D1A~2d2a22!

D

D
, ~F1!

dD

dl
5~2z222a!D24A

D2

D2
. ~F2!

KeepingD fixed we havez522A(2d2a22)D/D2 and the
equation forD,

dD

dl
5~22a!D22A~2d2a!

D2

D2
. ~F3!

The expansion parameter is 22a. For 22a,0, we obtain
the Gaussian fixed pointD* 50, the disorder is irrelevant
andz locks onto 2, characterizing ordinary diffusion. For
2a.0 we have the nontrivial fixed pointD* 5(2
2a)D2/2A(2d2a) and the dynamic exponent

z522
d22

d21
~22a!, ~F4!

signaling anomalous diffusion@27#, due to the interference o
the quenched long-range force correlations with the Brow
ian walk. In the vicinity of either fixed point we haveD( l )
5const3exp(2u22aul)1D* and we obtain scaling relation
for the distribution P(k,v,D) and the wave number an
frequency-dependent diffusion coefficientD(k,v,D),

P~k,v,D!5ezlP~kel ,vezl,D* 1const3e2u22au l !,
~F5!

D~k,v,D!5e~22z!lD~kel ,vezl,D* 1const3e2u22au l !.
~F6!

Similar to our discussion in Sec. IV, we infer from E
~F5! the dynamic exponentz and from Eq.~F6!, choosing
vezl.1 and kel.1, D(0,v,D)}v2(22z)/z @D* 1const
3v2u22au/z# and D(k,0,D)}k2(22z) @D* 1const3ku22au#.
For a.2, we haveD* 50 andz52, i.e.,

D~0,v,D!}v~a22!/2, ~F7!

D~k,0,D!}ka22, ~F8!

which vanish in thek→0 andv→0 limits, and for the tem-
poral and spatial behavior,

D~0,t,D!}t2a/2, ~F9!

D~r,0,D!}r 22a2d. ~F10!

For a,2, we haveD* .0 andz given by Eq.~F4! and

D~0,v,D!}D* v21/2@~d22!/~d21!#~22a!, ~F11!

D~k,0,D!}D* k2@~d22!/~d21!#~22a!, ~F12!

where the behavior ofD depends also on the dimension
the systemd @4,27#. Also,

D~0,t,D!}D* t1/2@~d22!/~d21!#~22a!21, ~F13!

D~r,0,D!}D* r @~d22!/~d21!#~22a!2d. ~F14!
-

APPENDIX G: THE ANISOTROPIC SHORT-RANGE CASE

Generally the quenched force field must be expected to
anisotropic consisting of a transverse divergence-free paB
and a longitudinal curl-free partE. The vector character ofF
is reflected in the transverse and longitudinal correlat
functionsDT andDL, respectively, introduced in Sec. II. Th
case of Brownian motion in a short-range anisotropic fo
field has been discussed to first loop order in Refs.@26,35#.
As in the isotropic case treated in Refs.@18,20# to second
loop order, the critical dimension isdc152; below dc1 the
long time behavior is controlled by the isotropic fixed poi
DT* 5DL* 5D* , giving rise to anomalous subdiffusion. How
ever, at intermediate times the diffusional character is c
trolled by a transverse fixed pointDT* Þ0,DL* 50.

1. The Brownian case

In order to clearly illustrate how the Le´vy case differs
from the Brownian case, we briefly discuss th
renormalization-group equations in the Brownian case. S
ting D150, D25D, D1

L,T5DL,T , and D2
L,T50, we obtain

from the general equations~3.42!–~3.47!

dD

dl
5~z22!D1A

~2d22!DT2dDL

D2
, ~G1!

dDT

dl
5~2z2d22!DT22A~32d!

DLDT

D2
, ~G2!

dDL

dl
5~2z2d22!DL24A

DL
2

D2
12A~d21!

DLDT

D2
.

~G3!

Keeping D fixed, we choose z522A@2(d21)DT
2dDL#/D2 and we have the equations forDT andDL ,

dDT

dl
5~22d!DL22D

2~d21!DT
21~322d!DLDT

D2
,

~G4!

dDL

dl
5~22d!DL22D

~d21!DLDT1~22d!DL
2

D2
.

~G5!

Above the critical dimensiondc152 we obtain the stable
Gaussian fixed point (DL* ,DT* )5(0,0), corresponding to nor
mal diffusion forz52 and irrelevance of the quenched for
field. Below dc1 to O(22d) we obtain the stable isotropi
fixed point (DL* ,DT* )5@(22d)D2/2A,(22d)D2/2A#, con-
trolling the long time anomalous behavior characterized
z5212(22d)2 evaluated to second loop orderO„(2
2d)2

… @18,20# and the unstable anisotropic transverse fix
point (DL* ,DT* )5„0,(22d)D2/4A…, determining the cross
over at intermediate times. We shall not pursue the Brown
case further here but refer to Refs.@26,35,27,49–52#.
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PRE 58 1709LÉVY FLIGHTS IN QUENCHED RANDOM FORCE FIELDS
2. The Lévy case

In the Lévy case we proceed as in Sec. IV, settingz5m in
order to fixD1 ,D1

L,T5DL,T , andD2
L,T50, the general equa

tions ~3.42!–~3.47! imply the renormalization-group equa
tions

dD2

dl
5~m22!D21A

3
@D1~22m2d!2D2d#DL1~D11D2!~2d22!DT

~D11D2!2
,

~G6!

dDL

dl
5eDL22A

2DL
22~d21!DLDT

@D11D2#2
, ~G7!

dDT

dl
5eDT22A~32d!

DLDT

@D11D2#2
, ~G8!

wheree5dc12d52m222d.
Again we observe that irrespective of the vector chara

of the random forceF the dynamic exponentz locks onto the
Lévy indexm, owing to the long-range character of the Le´vy
steps. The equations~G6!–~G8! also have three fixed points

~D2* ,DL* ,DT* !5~0,0,0! ~Gaussian!, ~G9!

~D2* ,DL* ,DT* !

5S 2e
D1

2~32d!
,e

D1
2

2A~32d!
,e

D1
2

2A~32d!
D ~isotropic!,

~G10!

~D2* ,DL* ,DT* !5S e

4

D1~423m!

22m
,e

D1
2

4A
,0D ~longitudinal!.

~G11!

In order to examine the stability of the fixed points we der
renormalization-group equations toO(e). Setting D2( l )
5D2* 1dD( l ), DL( l )5DL* 1dDL( l ), and DT( l )5DT*
1dDT( l ), we have

ddD2

dl
5S m221A

~d12m24!DL* 2~2d22!DT*

D1
2 D dD2

1A
D1~22m2d!1D2* ~2m1d24!

D1
2

dDL

1A
~2d22!~D12D2* !

D1
2

dDT , ~G12!

ddDL

dl
5S e22A

4DL* 2~d21!DT*

D1
2 D dDL

1S 2A~d21!DL*

D1
2 D dDT , ~G13!
r

ddDT

dl
5S e22A~32d!

DL*

D1
2 D dDT2S 2A~32d!

DT*

D1
2 D dDL .

~G14!

In the vicinity of the Gaussian fixed point we have th
solution

dD2~ l !5FdD2
01

A

D1
S 22m2d

d2m
dDL

0

1
2~d21!

d2m
dDT

0D Ge2~22m!l

2
A

D1
S ~22m2d!

d2m
dDL01

2~d21!

d2m
dDT

0Dee l ,

~G15!

dDL~ l !5dDL
0ee l , ~G16!

dDR~ l !5dDT
0ee l , ~G17!

and the fixed point is stable fore,0, i.e.,d.dc152m22.
Eliminating l we obtain for the flow in the (D2 ,DL ,DT)

space fore,0,

dD25FdD2
01

A

D1
S 22m2d

d2m
dDL

01
2~d21!

d2m
dDT

0D G
3F dDL,T

dDL,T
0 G ~22m!/ueu

2
A

D1
F22m2d

d2m
dDL1

2~d21!

d2m
dDTG ~G18!

and the discussion in the isotropic case applies with a
modifications. Ford.dc2 the trajectories approach the fixe
point with vertical slope with exception of trajectories lyin
in the plane

dD252
A

D1
F22m2d

d2m
dDL1

2~d21!

d2m
dDTG . ~G19!

In the limiting cased5m the trajectories approach th
fixed point with constant slope, i.e., the linear scaling regi
depends onm and becomes largest form5d, corresponding
to the case where naive perturbation theory yields a div
gent diffusion coefficient. Finally, fordc1,m,d the flow
approaches the fixed point tangentially to the plane defi
by Eq. ~G19!. The characteristics of the flow are depicted
Fig. 15.

The scaling analysis ofP andD2 also proceeds as in th
isotropic case. Suppressing the dependence onD1, which is
kept fixed, we defineP(k,v,D2 ,DL ,DT)5^P(k,v)&F and
we obtain the homogeneity relations:

P~k,v,D2 ,DL ,DT!5em l P„k,el ,vem l ,D2~ l !,DL~ l !,DT~ l !…,
~G20!
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D2~k,v,D2 ,DL ,DT!

5e~22m!lD2„kel ,vem l ,D2~ l !,DL~ l !,DT~ l !….

~G21!

For e,0, i.e., d.dc1, where the stable Gaussian fixe
point controls the scaling behavior, we obtain, of course,
same scaling properties ofP as in the isotropic case, i.e., th
dynamic exponentz5m andP is given by the scaling func
tions in Eqs.~G20! and ~4.14!. For the diffusion coefficient
D2 we obtain, correspondingly,

D2~k,v,D2 ,DL ,DT!

5e~22m!lD2~kel ,vem l ,DLe2ueu l ,DTe2ueu l !.

~G22!

In the long-wavelength limitk→0 and using the pertur
bative resultD2;aDL1bDT we have, settingvem l;1 and
kem l;1, the same results as in the isotropic case given
Eqs. ~4.19! and ~4.25! and the corresponding results for th
temporal and spatial behavior in Eqs.~4.22! and ~4.27!.

Below the critical dimensiondc1 in the neighborhood of
the isotropic fixed point in Eq.~G10! we obtain from Eqs.
~G13! and ~G14! the solutions fordDL anddDT ,

dDL~ l !52
~32d!

2~d22!S dDL
02

d21

32d
dDT

0De2ueu l

1
d21

2~d22!
~dDL

02dDT
0!e2ueu@~d21!/~32d!# l ,

~G23!

dDT~ l !52
32d

2~d22!S dDL
02

d21

32d
dDT

0De2ueu l

1
32d

2~d22!
~dDL

02dDT
0!e2ueu@~d21!/~32d!# l

~G24!

and we conclude that the isotropic fixed point is stable
1,d,dc1.

Similarly, near the anisotropic fixed point in Eq.~G11! we
have

dDL~ l !5S dDL
02

d21

32d
dDT

0De2ueu l

1
d21

32d
dDT

0e2ueu@~12d!/~32d!# l , ~G25!

dDT~ l !5dDT
0e2ueu@~12d!/~2!# l ~G26!

and we infer that the anisotropic fixed point is stable ford
,1. In Fig. 16 we have depicted the renormalization-gro
flow in the (DT ,DL) plane in the three cases~a! d.dc1, ~b!
dc1.d.1, and~c! d,1.

Finally, belowdc1 we obtain for the diffusion coefficien
D2 the same result as in the isotropic case in Eqs.~4.21!,
~4.26!, ~4.23!, and~4.28!.
e

y

r

pAPPENDIX H: THE ANISOTROPIC LONG-RANGE CASE

We finally discuss the anisotropic long-range case. In S
III we have given the general renormalization-group eq
tions in the case of two separate fall-off exponentsaL andaT
for the longitudinal and transverse force correlations, resp

FIG. 16. The anisotropic short-range case. Renormalizat
group flow in theDT -DL plane.~a! d.dc152m22 and the trajec-
tories flow towards the stable Gaussian fixed point (G) with con-
stant slope.~b! 1,d,dc1 and the trajectories flow towards th
nontrivial isotropic fixed point (I ). ~c! d,1 and the trajectories
flow towards the nontrivial longitudinal fixed point (A).
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tively. For simplicity here we only consider the case of
common fall-off exponenta5aT5aL,d. KeepingD1 fixed
by locking z onto m and settingD1

L,T50 andD2
L,T5DL,T ,

we extract from Eqs.~3.42!–~3.47! the renormalization-
group equations

dD2

dl
5~m22!D21A

D1~22m2a!2D2a

~D11D2!2
DL

1A
D1~2d22!1D2~2d22!

~D11D2!2
DT , ~H1!

dDL

dl
5eDL24A

DL
2

~D11D2!2
, ~H2!

dDT

dl
5eD24A

DLDT

~D11D2!2
, ~H3!

where we have introduced the expansion parametere52m
222a5dc12a. To first order ine we identify the usual
Gaussian fixed point (DL* ,DT* )5(0,0) and a line of non-
trivial fixed pointsDL* 5eD1

2/4A. We note that here there i
no isolated nontrivial fixed point unlike in the short-ran
case discussed above@53#.

To linear order ine we obtain in the vicinity of the re-
spective fixed points, settingDL,T5DL,T* 1dDL,T ,

ddDL

dl
5S e2

8A

D1
2

DL* D dDL , ~H4!

FIG. 17. The anisotropic long-range case. Renormalizati
group flow in theDT -DL plane.~a! a.dc152m22 and the trajec-
tories flow towards the stable Gaussian fixed point (G) with con-
stant slope.~b! a,dc152m22 and the trajectories flow toward
the nontrivial line of fixed points (L) with constant slope.
ddDT

dl
5S e2

4A

D1
2

DL* D dDT2
4A

D1
2

DT* dDL . ~H5!

In the neighborhood of the Gaussian fixed point we have
solutions dDT( l )5dDT

0ee l and dDL( l )5dDL
0ee l , showing

that the fixed point is stable fore,0, i.e., for d.a.2m
22 ~note thata,d in the long-range case!. Eliminating the
scaling parameterl we obtain for the flow in theDL -DT

planedDT5(dDT
0/dDL

0)dDL , i.e., the trajectories approac
the fixed point with constant slope@53#. Similarly for the
scale-dependent diffusion coefficientD2( l ) we have

dD25FdD2
01

A

D1
S 22m2a

d2m
dDL

01
d~d21!

a2m
dDT

0D Ge~22m!l

2
A

D1
F22m2a

a2m
dDL

01
2~d21!

a2m
dDT

0Gee l . ~H6!

Eliminating l we obtain for the flow fore,0

dD25FdD2
01

A

D1
S 22m2a

a2m
dDL

01
2~d21!

a2m
dDT

0D G
3F dDL,T

dDL,T
0 G ~22m!/ueu

2
A

D1
F22m2d

a2m
dDL1

2~d21!

a2m
dDTG ~H7!

and the discussion in the anisotropic short-range case ap
with d replaced bya.

The scaling analysis ofP andD2 also proceeds as before
We have the general homogeneity relations in Eqs.~G20!
and ~G21!. For e,0, i.e., a.2m22, the Gaussian fixed
point controls the scaling behavior. The dynamic expon
z5m and P is given by Eqs.~G20! and ~4.14!. For D2 we
obtain

D2~k,v,D2 ,DL ,DT!

5e~22m!lD2~kel ,vem l ,DLe2ueu l ,DTe2ueu l !

~H8!

and using the perturbative resultD2}aDL1bDT we find,
settingvem l.1 andkel.1, respectively,

D2~0,v,D2 ,DL ,DT!}v~a2m!/m, ~H9!

D2~k,0,D2 ,DL ,DT!}ka2m, ~H10!

and

D2~0,t,D2 ,DL ,DT!}t2a/m, ~H11!

D2~r,0,D2 ,DL ,DT!}r m2d2a. ~H12!

-
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For e.0, i.e., a,2m22, we have in the vicinity of the
stable line of fixed pointsdDL( l )5dDL

0e2e l and dDT( l )
5dDT

01dDL
0(DT* /DL* )(e2e l21) or eliminatingldDT2dDT

0

5(DT* /DL* )(dDL2dDL
0), showing that the trajectories ap
m

n

ac

-

ys

s.

c.

s-
ec

r,

ys

l,
proach the line of fixed pointsDL* 5eLD1
2/4A with slope

DT* /DL* . In Fig. 17 we have shown the renormalizatio
group flow in theDT -DL plane in cases~a! a.dc1 and ~b!
a,dc1.
rder
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