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Lévy flights, characterized by the microscopic step infleare forf <2 (the case of rare eventsonsidered
in short-range and long-range quenched random force fields with arbitrary vector character to first loop order
in an expansion about the critical dimensioh-22 in the short-range case and the critical fall-off exponent
2f—2 in the long-range case. By means of a dynamic renormalization-group analysis based on the momentum
shell integration method, we determine flows, fixed point, and the associated scaling properties for the prob-
ability distribution and the frequency and wave number dependent diffusion coefficient. Unlike the case of
ordinary Brownian motion in a quenched force field characterized by a single critical dimension or fall-off
exponentd=2, two critical dimensions appear in théuyecase. A critical dimensioror fall-off exponent
d=f below which the diffusion coefficient exhibits anomalous scaling behavior, i.e., algebraic spatial behavior
and long time tails, and a critical dimensi¢or fall-off exponent d=2f —2 below which the force correlations
characterized by a nontrivial fixed point become relevant. As a general result we find in all cases that the
dynamic exponenz, characterizing the mean square displacement, locks onto theihéex f, independent
of dimension andndependenbf the presence of weak quenched disorfi8i.063-651X%98)01008-3

PACS numbgs): 05.40:+j, 64.60.Ht, 05.70.Ln, 68.35.Fx

[. INTRODUCTION case corresponds to=1. The other case of subdiffusion or
dispersive behavior witk>2 is encountered in various con-
There is a current interest in the dynamics of fluctuatingstrained systems such as doped crystals, glasses, or fractals
manifolds in quenched random environmefit This fun-  [12-16.
damental issue in modern condensed matter physics is en- |ndependent of the spatial dimensidnordinary Brown-
countered in problems as diverse as vortex motion in highian motion traces out a manifold of fractal dimensidp
temperature superconductors, moving interfaces in porous o [17]. In the presence of a quenched disordered force

media, and random field magnets and spin glasses. In thig,|q in d dimensions, the Brownian walk is unaffected for

conéext the §|mplestt case 1s thaé'of ? random (\;\{alker n >dg, i.e., for d larger than the critical dimensiod,;
rahdom environment, corresponding 1o a zero- |men5|ona:dF the walk is transparent and the dynamic exporent
fluctuating manifold. This problem has been treated extenl-ockS onto the value 2 for the pure case. Below the critical
sively in the literaturg2—4] and many results are known. P '

In the case of ordinary Brownian motion, characterized by?imensionde; =2 the long time characteristics of the walk is
a finite mean square step, in a pure environment withou‘fhange‘zj to subdlzfu§|ve behavior with>2 [18-20. In d
disorder, the central limit theorefs] implies that the statis- — L (7“(1))*[Int]", independent of the strength of the
tics of the walk is given by a Gaussian distribution with a duénched disordge1]. . _ o
mean square deviation proportional to the number of steps Levy flights constitute an interesting generalization of or-

or, equivalently, the elapsed time, i.e., the mean square diglinary Brownian walks. Here the step size is drawn from a
placement is Levy distribution characterized by the step index5,11].

The Levy distribution has a long-range algebraic tail corre-
(r?(t))=Dt??, (1.)  sponding to large but infrequent steps, so-cati@ events
This step distribution has the interesting property that the
where the dynamic exponemtassumes the value=2 for  central limit theorem does not hold in its usual form. For
Brownian walk; D is the effective diffusion coefficient for >2, the second moment or mean square deviation of the step
the process andl ) denotes an ensemble average. distribution is finite, the central limit theorem holds, and the
There are, however, many interesting processes in natuynamic exponent for the Levy walk locks onto 2, corre-
that are characterized tanomalous diffusiomvith dynamic  sponding to ordinary diffusive behavior; however, fox 2
exponeniz# 2, owing to the statistical properties of the en- the mean square step deviation diverges, the rare large step
vironmentg 3,4]. Examples are found in chaotic systef§ events prevail determining the long time behavior, and the
turbulence[7,8], flow in fractal geometrieg9], and Lery  dynamic exponert depends on the microscopic step index
flights[10,11]; these cases generally lead to enhanced diffuaccording to the relationshig=f (f<2), indicating
sion or superdiffusion witle<2; we note that the ballistic anomalous enhanced diffusion, that is, superdiffusion
[11,22,23. The “built-in” superdiffusive character of lvy
flights has been used to model a variety of physical processes
*Permanent address: Institute of Physics and Astronomy, Universuch as self-diffusion in micelle systerf4] and transport
sity of Aarhus, DK-8000 Aarhus C, Denmark. in heterogeneous rock&2].
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In a recent lettef25] we considered Ley flights in the P(m)
presence of a quenched isotropic random force field and ex-
amined the interplay between the “built-in” superdiffusive
behavior of the Ley flights and the pinning effect of the
random environment generally leading to subdiffusive be-
havior. Generalizing the discussion [ib8,20,2 we found
that in the case of enhanced diffusion fox 2 the dynamic
exponentz locks onto f, independentof the presence of
weak disorder. On the other hand, we could still identify a
critical dimensiond.;=2f—2, depending on the step index N
f for f<2. Belowd,; the quenched disorder beconres- Mo
evantas indicated by the emergence of a nontrivial fixed i o . .
point in the renormalization-group analysis. We also briefly  FIG: 1. Plot of the Ley distribution for a microscopic step.
discussed the behavior of the subleading diffusive term. Her&n€ tail of p(#) is characterized by the step indéxThe distribu-
another critical dimensiod.,=f enters in the sense that for 1O IS cut off at a smallest step distanag corresponding to a
dimensions less thad;, the correction to the ordinary dif- microscopic length.
fusion coefficient diverges. This feature has also been disl]s first discuss and summarize the properties fyLitights
cussed from a heuristic point of view in R¢27]. Note that in a pure environment prop 9
in the Brownian case fof=2 the critical dimensions coin- P '
cide, i.e.,d¢;=dg». .

In the present paper we discuss in more detaili fights A. Levy flights
in quenched random force field with arbitrary range and vec- We consider a particle or for that matter a gas of nonin-
tor character thus corroborating and extending the results oheracting particles performing independent isotropic random
tained in Ref[25]. The paper is organized in the following motion in d dimensions. For the step size distribution we
manner. In Sec. Il we introduce and discussy flightsina  assume a normalized g distribution[5,11,17,28—3]L
pure environment. Next we derive the Langevin equation for

Lévy flights in a force field and the associated Fokker-Planck g fnh e 2792
equation for the probability distribution. In Sec. Ill we estab- P(md"7= s, 7 dy d@} and Sd:(d/z_ nr
lish perturbation theory for the probability distribution in the (2.1

Fokker-Planck equation averaged over the quenched random

force field and set up the renormalization-group analysis. ItHere, 7 is the microscopic step and the algebraic behavior in

order to extract the scaling properties and control divergenthe large step regime is characterized by the microscopic step

contributions, we dilute the degrees of freedom by means ahdex f. In order to ensure normalization of the distribution

the momentum shell integration method. Finally we derivep(#) we introduce a lower cutoffy, of the order of a mi-

differential renormalization-group equations to first loop or-croscopic length and assume a positive step inflex). Sy

der for the parameters in the model. In Sec. IV we determings the full solid angle on the surface of a unit spheredin

flows and fixed point structure for the renormalization-groupdimensions. In Fig. 1 we have depicted the/y elistribution

equations in some detail in the case of short- and long-rangg( 7).

isotropic force fields and determine the scaling properties. The macroscopic physics ensuing from theny.elistribu-

Since the discussion for anisotropic force fields is quitetion for the microscopic elementary step depends entirely on

analogous, we summarize this case in the Appendixes. Wee range characteristics pf{ #). For f>2, the second mo-

conclude the paper with a summary and a conclusion in Segient or mean square step,7%)=/p(#)7°d%y=(f/f

V. ) ) i —2) 73, exists and a characteristic step size is given by the
In the Appendixes we include more technical aspects ofot mean square deviatidm?) 2. For 1<f<2, the second

our calculations. In Appendix A, we discuss the derivation of,oment diverges, however the mean stepn)

a Fokker-Planck equation for ks flights, in Appendix B, = [p(y) nd%y=(f/f—1) 7, is finite, defining an effective

we derive self-energy, vertex, and force corrections 1o firskep size, In the interval0f<1, the first moment diverges

loop order, and in Appendix C, we derive renormalization- 5,4 even a mean step size is not defined.

group equations in the case of \heflights in a quenched For a Lavy flight consisting ofN steps the end-to-end

force field. I_n Appe_ndlx D_, we consider the renormallzatlon-distance of the random walk fﬁ:EiN:ﬂh or, assuming one
group flow in the isotropic short- and long-range cases. In

s _ _ st . _
Appendix E, we show that the dynamical exponent does no?teﬁ pe;]r unrl]t timet=N, r(t) E.'lem , and 'ft fO”OW.S gerl} .
depend on whether we keep thewyecoefficient or diffusion erally that the mean sgquare displacement for statistically in-
coefficient fixed under scaling. In Appendix F, we Summa_dependent step events is given by

rize the isotropic long-range case for Brownian walks. Fi- (r2(t))=t(?) 2.2
nally, Appendixes G and H are devoted to a discussion of the ks |

anisotropic short- and long-range cases, respectively. Consequently, for general step distributions with a finite sec-

ond moment or mean square step, as in particular the case for
Lévy distribution forf>2, the mean square displacement is

It is our aim to analyze the scaling properties ofviie proportional to the elapsed time. This behavior is character-
flights in a quenched random force field. For that purpose leistic of ordinary Brownian motion leading to diffusive be-

Il. THE MODEL
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| 1L displacementr?(t))~t?*, i.e., according to Eq(1.1) the

dynamic exponent= u, indicating superdiffusive behavior.

However, as mentioned above, this reasoning is not correct

2 for Lévy flights. The expression in Eq2.2) is not defined
for Lévy flights since(#?) diverges and the scaling regime
must be defined with some care if we wish to give meaning

| f to Eq.(1.1). One way is to consider vy flights in a growing

> volume of linear sizel; the mean square displacement is

then given by(r2(t)), = f,r?P(r,t)d’, whereV=LY. Using
FIG. 2. The scaling index plotted as a function of the step the scaling form in Eq(2.6) with
index f.

d

havior for a gas of Brownian walker and corresponds to the G(r)=
dynamic exponent=2 in Eq.(1.1) [5,32].

On the other hand, for vy flight with step indexf <2
the second momentz,?) diverges, Eq.(2.2) is undefined,
and we cannot define a mean square displacement and a
namic exponent according to the heuristic definition in Eq.
(1.1). However, this point will be clarified below in terms of (r3(t)), = |t|2"‘f r2G(r)der. (2.9
the probability distribution. (Ll

The probability distribution for the random walker is
given by P(r,t)=(d8[r—r(t)]) and is easily derived by
means of the method of characteristic functidbsl7,3Q.
We obtain, noting that is discrete,

d
) f exdik- /(DY) —k*]

(2m)¥’
2.7

]
DY g

dge obtain, changing variables, the mean square displacement

From Eqgs(2.6) and(2.8) we infer that the characteristic time
in the problem is the time-L* it takes the random walker to
traverse the volum¥~LY. At long times, i.e., fotY#>L,

d9k (rz(t)>,_=|t|2/“frzG(r)ddr=const><|t|2’“ (2.9
2 h (2.3 0
aa

P(r,n:f & [p(k)]

) . . ... and comparing with Eq.1.1) we deduce the dynamic expo-
wherep(k) is the Fourier transform of the step distribution nentz= u. At short timest¥#<L, usingG(r)~r =9 for r

p(n), p(k)=fe ™ "p(5)d%sy. At larger, Eq. (2.3 samples large, we obtain

the smallk region. For smalk the behavior ofp(Kk) is con-

trolled by the algebraic power-law tail qi( ). We find (r3(t))_ =const [t| L%, (2.10
P(k)=1—D(kao)"=exd —Dnok"], (24 in accordance with Eq(2.2. For Levy flights with u

<2, {r%(t)), diverges fort—o. In the Brownian casey

=2 and(r?(t))=|t| in both cases in accordance with Eq.

(2.2). Summarizing, in order to characterize anomalous su-

perdiffusion arising from Ley flights by means of the mean

square displacement we must conceptually confine the flights

whereD is a dimensionless geometrical factor andis a
scaling index. Fof>2, the second momeKt;?) exists and
w locks onto 2; forf<2, (#?) diverges andu=f. By in-
sertion we obtain

4%k to a box of sizeL and define the scaling region forL*.
P(r’t)zf exgik-r—[t|D 74k#] . (2.5  Alternatively, we can discuss the scaling properties and the
(2m)¢ identification ofz by means of the scaling form in E(R.6)

where the argument controls the range in question.
In Fig. 2 we have shown the dependence of the scaling index

u on the step indexX. From the structure of Eq2.5 we

B. Langevin equation for Lévy flights
infer that P(r,t) has the scaling form g a ey g

It is convenient to discuss Mg flights in terms of a
P(r,t)=t|"Y#G(r/]t|¥). (2.6)  Langevin equation with “power-law” nois¢32,33. In an
arbitrary force fieldF(r), representing the quenched disor-
For f>2, u=2 and the scaling functiorG(x) takes a dered environment, the equation takes the form
Gaussian form charazcteristic of ordinary Brownian maotion, a0
G(x)=exp(—const x4). This is a consequence of the cen- Y
tral limit theorem[5], which here implies a universal behav- dt F(r(t)+ (). (217
ior characterized by the exponent=2. Forf<2, u=f and
the scaling functiorG(x) can in general not be given explic- Here #(t) is the instantly correlated power-law white noise
itly in terms of known functions. For =1, the ballistic case with the isotropic distribution given in Eq2.1) at a particu-
r~t, we find the Cauchy distribution G(x)=(1 lar time instant.
+constx x?) ~[(d+ /2] 1t s, moreover, easy to show that  The microscopic stepg, with distribution p(s;) consti-
G(x)—const forx—0 andG(x)—0 for x—oo. tuting a Levy flight are discrete processes, so properly speak-
The scaling properties of vy flights are described by ing the Langevin equatiof2.11) is the continuum limit of
Egs.(2.5 and(2.6). From Eq.(2.6) we infer the mean square the corresponding difference equation defined for a discrete
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time stepA. This limit is singular and it is instructive to of an associated Fokker-Planck equation, thereby absorbing

discuss the limiting procedure in some detail. the fluctuating Ley noise 2(t).
Limiting our discussion to the force-free cases 0, set-
ting r,=r(ty), 7,=7(tn), andt,=nA, the difference equa- C. Fokker-Planck equation for Lévy flights
tion is given by ¢,.1—r,)/A=mn, with solution r, _ ] )
=AEB=0%- From the definition ofP(r,n)=(8(r—ry)), In the absence of the for;e_ﬂeld, |.E(r)=_0, it follows
we obtain, using 5(r):fexp(—ik- r)ddk/(Z'ﬂ)d together from Eqg. (25) that P(k,t) satisfies the equation
with exp(k-r,)=I17_oexp(Ak- 7,) for P(k,n) IP(k.1)
= [exp(k-r)P(r,n)d, m’ =—D,k*P(kt), (2.1
P(k,n)=(expiAk- 5))" (2.12

where we have absorbed the renormalized cutgffin the
and the issue is to define the continuum lihit-0, keeping | évy coefficientD,=D 7. The form of Eq.(2.16) leads us

t=nA fixed, of the expression fdp(k,n) in Eq.(2.12. For g suggest the following Fokker-Planck equation for aye
simplicity we first consider the case of a Gaussian distribuyyglker in a force field:

tion for p(#), i.e., the case of ordinary Brownian motion,

p(n) = (1120 mY?)%exp(— 77/40?) of width 20. Evaluating aP(r 1)

(exp(Ak- )) by completing the square in the exponent, we &t, =—V-(F(r)P(r,t))+ D, V*P(r,t)+ D,V2P(r,t).
obtain P(k,n)=exp(A2%0%kn). In the continuum limit,

Ao?—D and we have the Gaussian distribution (217

P(k,t)=exd — Dk?t]. (2.13 Here the first term on the right-hand side of E2.17) is the
usual drift term due to the motion of the walker in the force
Correspondingly, the white noise condition, i.e., uncorrelatedield and the second term arises from KE2.16), where we
noise{ nf ) = azﬁnméaﬁ, becomes in the continuum limit have introduced the “fractional gradient operatd/* as the
Fourier transform of-k*. V#~r~97# is a spatially nonlo-
(7*()nP(t'))=Do&*Ps(t—t"). (214 calintegral operator reflecting the long-range character of the
) ) ) Lévy steps; forw=2 it reduces to the usual Laplace operator
Consequently, in the Gaussian case we must in the CORyescribing ordinary diffusiofid4]. Finally, we have for later
tinuum limit A— O scale the widtlor of the noise distribution purposes included the ordinary diffusion ter,V2P(r,t),
to ‘Qﬁ“ity in order to obtain a finite diffusion coefficiel  qiginating from the next to leading long-range part of the
=o°A. In the Levy case the noise distributiqn(#) is given  gistributionp( ) and corresponding to the next leading term
by Eq. (2f-1) and from Eq. (24), (exp(Ak-5)=1 4 5rderk? in the expansion in Eq2.4). The derivation of
—D(kA ’70)f for f<2 and kAzny<1, i.e, P(kn)=[1 1o Fokker-Planck equation is discussed in more detail in
—D(kA 70)']". Using the relation (+x/n)"—exp(—Xx) for Appendix A.
n—oo, we obtain in the continuum limiA—0 andt=nA For the quenched random force field we assume a Gauss-
fixed, ian distribution,

P(k,t)=exg —D7HATkt]. (2.15

_1 deqdy ' a aBir _¢!'\—1EB(y!
In order to eliminate the discrete time stApand keep the p(F(r))ocexp{ zf drdr FEMAT )RR,
coefficientD fixed, we must renormalize the cutaff in the (2.18
Lévy distribution (2.1) according ton{,A“lzl. We notice
that the borderline case =1. For 1<f<2, ,— for  With the spatial correlations given by
A—0, i.e., the cutoff moves out to infinity. For<0f <1, on
the other handyy—0 for A—0. We also notice thah 7, (FYNFA(r ) e=AF(r—r’). (2.19
—0 so thatkA o<1 is satisfied for allf.

_Summarizing, we can without loss of generality discussHere A®#(r—r’) is the force correlation function expressing
Levy flights (and Brownian motiohin terms of a continuous  the range and vector character fr) and( )¢ denotes an

Langevin equation provided we scale the underlying discret@verage over the force field according to the distribution
noise distributions accordingly. Note, however, that thesg2.18g).

renormalizations are not observable; the problem at hand is |n the unconstrained cage*” is diagonal; however, gen-

defined by the Langevin equatiof@.11). ~ erally the force field breaks up into a longitudinal curl-free
Levy flights in an arbitrary force field are in principle part E and a transverse divergence-free pyti.e., F=E

described by the Langevin equatiéh1l) together with the B whereV-B=0 and VX E=0 [4,26,35. Assuming that

distribution in Eq(21) for the noiseﬂ. For a giVen force the cross correlation of and B VanisheS,<EaB,8>:0, we
field, the only random aspect resides in the najevhich  have in Fourier space

drives the positiorr of the random walker; the force field

F(r) acts as a static background. However, for a random KakP
force field modeling the quenched static environment, the <E“(k)Eﬁ(k’)>F=(2w)d5(k+ k') AL(k),
Langevin equatiori2.11) harbors two different kinds of sto- k2

chasticity and it is convenient to recast the problem in terms (2.20
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E ok-p B wkp
AT(K). ko | ke, _ko . _ke
A A
(2.21) b Npo T Mo
The case of an unconstrained force field then corresponds to FIG. 3. Diagrammatic representation of the Fokker-Planck
AL=AT=A and we obtain the force correlation function ~ €duation.

kkA

ap_
1) 2

(B(k)BP(K'))e=(2m)*5(k+k")

(FOFP(K))e=(2m)8(k+k")6PA(K). (222  where 6(t) is the step function, we obtain, introducing for

The range of the force correlations is characterized by thvl;f1 tefr o?%%oiifti?ei Tgnu%?iilgn:észsggpl'rnegssgcetir\l/ge%;m:g e
T 1 )

functionsAL(k) andAT(k). ) :
In the case of a finite range e.g., AMT(r) Fokker-Planck equation

xexp(—rko)/rf2, with range parameter K4, we have

AST(k)1/(k?+K3). In the long-wavelength limitk—O0, P(k,0)=Gg(k,w)Po(k)+ Go(k, »)
A“T(k)—const, corresponding to theero range case g
A“T(r)<8(r). For infinite rangethe force correlations are Xf d°p [(—i)A k- E(k—p)
characterized by the exponemt, AT(r)ecr=3,ANT(k) (2m)d L
ocka_d.

Summarizing, we characterize a general force field by the +(—=i)\1k-B(k=p)]P(p,). (3.2

following expressions for the longitudinal and transverse

force correlation functions: Here the force field is averaged according to E§20 and

AL(K)=AL+ ALka—d, 29 (2.21) for all pairwise contractions according to Wick's theo-
(k) 12 .23 rem following from the Gaussian distribution in E@®.18),
AT(k)zAI_’_A;kand. (2.24 Po(k)=P(k,t=0) is the initial distribution, and we have,

moreover, introduced the unperturbed propagator or Green’s
We have here for completion introduced two separate indifunction
ces,a, andar, for the power-law behavior of the longitu-
dinal and transverse correlations, respectively. Eory
>d,AbT(k)—ALYT, in the long-wavelength limit and we Go(k,w)= _
effectively retrieve the zero-range case; foa, t —iw+Dk*+Dok?
<d,A"T(k)— A5 k3179 and the specific long-range be-
havior enters in thé&— 0 limit.

1

(3.3

The integral equatiofi3.2) immediately lends itself to a di-
rect expansion in powers &,B or A\ ,\1. In order to dis-
. RENORMALIZATION-GROUP THEORY cuss the various perturbative contributions, it is convenient
to represent Eq(3.2) diagrammatically as done in Fig. 3
[4,26,41-44. Here,P(k,w) is characterized by a solid bar,
rﬁo(k) by a cross, the verticesi\| and —i\; by dots, the
orce fieldsE and B by wiggly lines, andGq(k,w) by a
directed arrow.

Hence, iterating Eq(3.2) in powers of\; and A1 and
averaging over the force fields, keeping one component
fixed, we identify perturbative corrections (o the self en-
ergy, (ii) the vertex functions, andii) the force correlation
functions. Defining the self-energy(k,w) by means of the
Dyson equation,

There are a variety of techniques available in order to
treat the random Fokker-Planck equati¢hl?). Applying
the Martin-Siggia-Rose formalism in functional forf86—

40] and using either the replica methgd] or an explicit
causal time dependeng#8,38,4Q, one can average over the shown diagrammatically in Fig. 4, where the renormalized

quenched force field and construct an effective field theorypropagator is indicated by a solid directed line and the self-
A more direct method, which we shall adhere to in theenergy by a circle, we derive the renormalized Fokker-

present discussion, amounts to an expansion of the Fokkepianck equation shown in Fig. 5,
Planck equatior(2.17) in powers of the force field and an
average over products &f(r) according to the distribution

in Eq. (2.198. ko _ _ko , _ko C K,®

Defining the Laplace-Fourier transform

The problem of analyzing the asymptotic long time scal-
ing properties of Ley flights in a random quenched force
field has now been reduced to an analysis of the rando
Fokker-Planck equatiofR.17), in conjunction with the force
distribution in Eq.(2.18 and the force correlation functions
in Egs.(2.19—-(2.21). In particular, we wish to evaluate the
scaling behavior of the distributioR(r,t) averaged with re-
spect to the force field, i.e{P(r,t))¢.

A. Perturbation theory

G(k,w)=Ggy(k,w)+Gy(k, )2 (k,w)G(k,w), (3.4

FIG. 4. Diagrammatic representation of the Dyson equation de-

P(k,w)=f d3r dtexp(iot—ik-nP(r.H)6t), (3.1 gn(ililgw)the self-energy> (k,w) and the renormalized propagator



PRE 58 LEVY FLIGHTS IN QUENCHED RANDOM FORCE FIELDS 1695

DO IOU TP o o

FIG. 5. Diagrammatic representation of the renormalized A N
Fokker-Planck equation. +p o L +p o T

FIG. 7. Diagrammatic representation of the first loop order cor-

P(k,w)=G(k,w)Py(k)+ G(k,w) rection to2 (k, ).
d
p . dd
X —i)AL(k,p,w)-E(k—p) _ P
f(zﬂ_)d[( L(k,p,w)-E(k=p 3 (k)= )\ZAJ(ZW)dk~(k/2+p)GO(k/2+p,w).
+(~D)Ar(k,p,0)-B(k-p)IP(p,w). (3.9 (3.7

To leading order irk? the static contribution$ (k,0), given

Here, A, (k,p,») and A (k,p,®), depicted as circles in Fig. in Appendix B, only contributes to the ordinary diffusion
5, are the renormalized vertex functions; to lowest ordef€M D2k” in Eq. (3.6); there is no correction to the anoma-
Ap 1(K,p,@) =X\ k. In a similar manner we extract correc- lous Levy term D;k“. We shall see later that this has a
tions to the force correlation function from the four-point Profound effect on the scaling properties ofvyeflights. For
vertex functionT'(k,p,],w) in Fig. 6 and the contraction the correction to the diffusion coefficieli, we then find,
ST (kk |, 0)G(k—1,w)d/(277)9, also shown in Fig. 6. To performing the integration over the solid angle,
lowest orde” (k,k, |, ) = —k*A*A(1)(k—1)#, summed over
« and B, whereA*? is the force correlation function defined
in Egs.(2.19—(2.21). To second order in, and\y or first 5D —E)\ZA Sy
order inA" andAT, corresponding to first loop order in the 22" Tdemd
field theoretic formulatiof18,36—40Q, we find diagrammatic
contributions ta®, A, 1, andl’ shown in Fig. 7, Fig. 8, and Dq(d—u)p*t9 14+ Dy(d—2)pdtt
Fig. 9, respectively. f dp 5.0 5D

Let us first discuss the self-energy correction. Solving the [D1p*+D,p°®
Dyson equation(3.4), the self-energy (k,w) enters in the (3.8
renormalized propagator,

whereS; is given in Eq.(2.1) and we have introduced a uv
cutoff corresponding to a microscopic length of ordex 1ih
Gk w)= 1 the long-wavelength limip— 0, the integrand in Eq3.8) is
,w) - , (3.6 ; L .
—iw+DkF+D,ok2—3 (K, w) dominated by the leading kg term ~p* and simple power
counting shows that the integral is convergent &b u
yielding a correction td,. Ford<u, the integral diverges
and directly determines the diffusional character of the ranin the infrared limitp—0 and we need a renormalization-
dom walker. In Appendix B we discuss in some detail thegroup approach in order to disentangle the true asymptotic
evaluation of3 (k,w) to leading order irk? on the basis of scaling behavior. We encounter here the finitical dimen-
the diagrams in Fig. 7.

In the case of an isotropic unconstrained zero-range force B
correlation function\| =\t=\ andAN(k)=AT(k)=A, we Ko
have in particular Ak,p,a)= + d +

k-, ®

k-l, ® p-l, ® ko AL g
B B
k,m AL K, XT
+
A A
K, ® p, ® K, ® K, ® | - | T
p,® p,®

FIG. 6. Diagrammatic representation of the four-point vertex
function I'(k,p,l,w) and the contraction [T (kk,l,0)G(k FIG. 8. Diagrammatic representation of the first loop order cor-
—l,0)d/(27r)". rection toA(K,p,w).
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- FIG. 9. Diagrammatic representation of the
first loop order corrections tb'(k,p,l,w).

p-lo

sion d.,=u characterizing the behavior of the ordinary dif- A(k,p,w) on the basis of the diagrams in Fig. 8 in the iso-

fusion coefficientD,. In the Brownian cas¢l8-20 u=2
and the critical dimension is 2.

tropic case. The vertex functioh describes the coupling of
the random walker to the quenched force field. In Appendix

In a similar way we can discuss the vertex correctionB we discuss in detail the evaluation Af We obtain

dd
A(k,p,w)=7\k—>\3Af 2 )d(k—l)k-(p—l)Go(k—l,w)Go(p—l,w), (3.9
o
from which we extract to leading order knand forw=0 the perturbative correction to,
d+1
Sh=—N3A S . P . (3.10
d2m?Jo T[Dyp#+D,p?)?

Similarly to our discussion of the self-energy, the integral in E8.10 is convergent ford>2u—2, whereas for
d<2u—2 the corrections\ diverges in the far-infrared limip—0. We note here the appearance of a secoritical
dimension d;,=2u—2, characterizing the behavior of the vertex correction. In the Brownian gas2 and both the vertex
and self-energy diverge fat<<2. We also note that for =2 the first order correction tB, actually vanishes fod=2, thus
requiring an expansion to second orderAinfourth order in\) or, equivalently, to two-loop ordd8].

Finally, we discuss the correction to the force correlation funciaextracted from the contraction of the four-point vertex
function depicted in Figs. 6 and 9. From the results in Appendix B, we deduce

d%

I'(k,p,l,0)= —k~(p—|))\2A+)\4A2J 2

77_d

d
+)\4A2f d'n
(2m)°

and we obtain, contracting E¢3.11), to leading order irk
and forw=0 the perturbative correction t,
A pd+1
f dp—ﬂ 73"
0 [Dyp*+Dyp7]

1
Y
(3.12

Also here we note that the correction 2o diverges ford
<d¢1. In the Brownian casey =2, the critical dimensions
coincide, i.e.d¢;=d¢,.

S
SA=N2A2—— (
(2m)¢

k-(p—1I)(k=n)-(p—1+n)Gy(k—n,w)Gy(p—I+n,w)

) K-(p—n)(k—n)-(p—1)Go(k—Nn,w)Go(p—N,w)

(3.11

B. Momentum shell integration

In order to disentangle the breakdown of primitive pertur-
bation theory and deduce the scaling properties of the force
averaged distributioq P(r,t))r and the mean square dis-
placement ((r%(t)))s, we carry out a dynamic
renormalization-group analysis, following the momentum
shell integration method26,41,43,4% This approach is a
way of systematically diluting the short-wavelength degrees
of freedom, keeping the long-wavelength modes controlling
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Setting the uv cutoff\ =1, dividing the wave number inter-
_é\% . val 0<k<1 into a long-wavelength regime<tk<e™', |
>0, including the long distance scaling region, and a short-

wavelength “shell” regione™'<k<1, the idea is now to
average out the short-wavelength degrees of freedom, using
. N . |.é\lt\2> . the distribution of the force field in Eq§2.18 and(2.19 in
+ + _I . . .
1 1 1 1 1 the shelle”'<k<1, in order to derive a renormalized
Fokker-Planck equation valid for long wavelengths<k

T
é <e™!. Projecting the Fokker-Planck equatit$113 onto the
} } + two regions in wave number space, we obtain the coupled
W equation

P'=G\Py+\Gy(FP+F'P+FP'+F'P'), (3.14

= X+ + ]

FIG. 10. Diagrammatic representation of the renormalized
Fokker-Planck equation valid in the long-wavelength regienkl
<e™!. The slash indicates corrections evaluated on the séll P=GoPo+AGo(FP+F'P+FP'+F'P’), (3.19
<k<1.

where the prime refers to the shell'<k<1. Averaging the
the asymptotic scaling behavior. The method derives from|ong-wavelength” Fokker-Planck equatiof8.15 with re-
Wilson’s original momentum space procedy#s] applied  spect to the short-wavelength degrees of freedom in the
to static critical phenomer{@2] and is an implementation of shell, we have, noting th&F ') =0,
the real-space Kadanoff construction in momentum space
[43]. The application of renormalization-group theory to dy- (PYer=GPo+NGoFP+NGoF (P Ve +NGo(F P )¢ .
namic phenomena described by Langevin-type equations (3.16
was initiated in the context of dynamical critical phenomena
in Refs.[42,47,48. The implementation of the momentum The evaluation of P’ )g: and(F'P’)¢: to a given order il
shell integration method was introduced and discussed i% now achieved by expanding the “short-wavelength”
Refs.[41-43. _ _ _ Fokker-Planck equatiof8.14) and averaging ovef’. Using

Here we briefly review the momentum shell integration ., GoFG, and GoF'G,F'G) vanish in the long-
me_thoq in the context Of the Fpkker-PIgnck_equatﬂarQ), . wavelength limit, since two small wave numbers cannot add
which in the case of an isotropic force field is expressed "hp to a wave number in the shell, and defining the force

the symbolic form contraction according to the notatiEjiFéj=<F’F’)5ij , we
P=GoPy+\GoFP. (3.13  obtain

(P)er=GoPo+AGoF(P)r + N2 GoF¢GoF ((P)r: + N *GoF ¢ GoF ¢, GoF ¢ GoF ¢ (P)er

+NGoF L GoF L GOF L GoF L (PYe: + N°GoF (GEF GyF L P)er + N GoF L GOF GLF GyF L(P)er,  (3.17)

which is diagrammatically depicted in Fig. 10. general renormalization-group equations are given in Appen-
We note that the momentum shell integration methoddix B, we here present a detailed derivation of the

combined with a perturbative expansion is essentially a nonrenormalization-group equations in the isotropic short-range

linear procedure leading to a more general Fokker-Planckase.

equation involving higher order force fields as shown in Fig. Disregarding the two-force term in E¢B.17), which is of

10, where the last diagram corresponds to two force fiElds higher order ink and therefore becomes irrelevant in the

coupling to the distributiorP. More importantly, for deriv- Iong-wavelength limit, we obtain the renormalized Fokker-

ing renormalization-group equations we identify the same>lanck equation

self-energy, vertex, and force corrections as in primitive per- . 2

turbationgxiheory but now evaluated Withinpthe sh(I)Drt- [T+ Dk + (Dot oD)KTIP(k, )

wavelength shell. In this manner the elimination of the short- ddp
wavelength degrees of freedom enters in the Fokker-Planck = Py(k)+ (N + 5)\)f 3 (—Dk-F(k=p)P(p,w)
equation for the remaining long-wavelength degrees of free- (2m)
C. Renormalization-group equations and force correlation function
While the general expression to first loop order for the (FK)FP(p))e=(A+ 8A) 6% (2m)98(k+p),

self-energy, vertex, and force correlation corrections and the (3.19
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ioetl\rll.val|d for wave numbers in the interval for<t,p zocl S, 1 Dl(d—M)JFDz(d—Z))\ZAl
The first step in deriving renormalization-group equations 2 (2m)ad [D;+D,)?
is then to rescale the wave number range tokQp<<1 and (332
in this manner compensate for the eliminated degrees of free- 3
dom. Rescaling at the same time frequency, probability dis- Shot— Sy } A°A | (3.33
tribution, and force field, according to (2m)9d[D;+D,]2 " ’
' — Ll
k' =ke', (3.20 S¢ [, 1) NA
SAx 3 1—a Sl (3.39
0’ = wel), (3.21) (2m)9\ [D,+D,]
W ive at the differential lization- ti
P/ (K \0') = P(k ), (3.22 e arrive at the differential renormalization-group equations
dD,
F'(k')=F(k)e A", (3.23 W=(Z—,LL)D1, (3.35
wherea(l) and B(l) are to be determined subsequently, we _ B
thus obtain the renormalized Fokker-Planck equation &:(2_2)D2+AD1(d #)+Dx(d=2) A2A,
di [D1+D,]
[—io +Di(Kk'*+ DK 2P (K',0") (3.36
d’p’ dA A3A
=P’(k’)+(—i)>\’(|)J’ K'-F'(k'=p")P'(k",0") —=(z+tu—1-dA-2A———, 3.3
0 (2m)¢ ar : [D1+D,])? 337
(3.29 )
and force correlation function ﬁ:(d_zu)AJFZA(d_l)[Dﬁ_ D2’ (3.39
(F (K)FP (p)pr=A" (1) 8*F(2m)s(K +p') where A=(1/2d)Sy/(2m)? is a geometrical factor,

B25  g=2792(d/2—1)! [cf. Eq. (2.D)].

In conformity with Ref.[26] we have included a vertex
coupling\. However, since\? is always associated with
in the diagrammatic expansion, the inclusion of batland
A is essentially superfluous and we can for example\set

for wave numberk’ andp’ in the original range &k’,p’
<1; note thatPy(k)=P,(k’). We have here introduced the
scale-dependent paramet&r$(l), D(l), N’ (1), andA’ (1)

given by =1 and discuss the coupling to the force field by means of
) ptad) alone[18]. Thus assumingi\(l1)/dI=0 in Eqg. (3.37) and
Dy()=Dje #"7, (328 solving foru(l), we finally obtain the renormalization-group
equations
D5(1)=[Dy+8Dy(1)]e 2 o), (3.27)
D,
)\’(I)=[)\+5)\(I)]e"(1+d)+“(')+5<'), (3.28 W_(Z_M)Dly (3.39
A'()=[A+ 5A(1)]e~2F0), 3.2 dD Dy(d—u)+Dy(d—2
(h=[A+5A(1)]e (3.29 9: (o 20, +A i Dm D2<2 N
+
Note that the correctiongD,(1), S\ (l), andSA(l) depend [D1+Do] (3.40
on the scale parametksince they are evaluated in the short-
wavelength shele™'<k<1. dA 2
In order to allow for an iteration, the renormalization- —:(22—d—2)A—2A(3—d)—2, (3.4
group equations are recast in differential form by considering dl [D1+D5]
an infinitesimal scale parameterand expanding the right-
hand sides of Eqg3 25_(3 29 Definingp ¢ g which provides the basis for the discussion of the scaling
' T properties of Ley flights in an isotropic short-range force
| field.
a(l)zf z(e")dl’, (3.30 Deferring details to Appendixes B and C we obtain in a
0

precisely analogous manner the renormalization-group equa-
tions forDq, D,, AL, A5, A], andAJ, in the case of Ley
B(1)= f'u(l Ndl’ (3.31) flights in a general force field with range characterized by the
0 ' indicesa, anda:

and noting from Eqgs(3.8), (3.10, and(3.12 evaluated on ab,
the shellk,p=1 that ar ~(z=wDy, (3.42
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dD, (AH AE)[Dl(Z— u—d)+D,(—d)] havior is the same as in the pure case. Below, we substantiate
——=(z—2)D,+A this claim in more detail when we discuss the isotropic short-
dl 2
[D1+Do] range case.
(AT+AD[D(2d—2)+Dy(2d—2)] _ _
+A (D.+D ]2 A. The isotropic short-range case
11D

In the case of an unconstrained short-range force field the

Ag(d—aL)(Dl+ D,) renormalization-group equations are given by E@39-
+A

> (3.43  (3.41. They describe how the parameters in the renormal-
[D1+D5] ized long-wavelength Fokker-Planck equati¢®.24) and
force correlation functiort3.25 change as we differentiably
Ii |i+AI2' average out the short-wavelength degrees of freedom in the
WZ(ZZ—d—Z)AE—4Am v shelle™'<k<1, characterized by the scale paraméter
110>
(Ah’A;)(AIﬁ'A;) 1. Renormalization-group flow and fixed-point structure
+A(2d—-2) 5.+ D.P (3.44 Requiring a constant anomalous diffusion coefficibnt
[D1+D2] under renormalization, i.ed,D,(1)/d1=0, Eq.(3.39 implies
; L that the dynamic scale-dependent expor#h} locks onto
dA; AT+A5 m, z(1)=u, and we obtain the renormalization-group equa-
W:(Zz—d—Z)AI_“Am 1 tions forD, andA,
11 D>
(AT+AD(AL+AY) db; _ Dy(d—u)+Dy(d-2)
+A(2d—2 3.4 a1~ (k=2)DatA A, (42
( : [D;+D,]? (349 d| [D;+D,]?
dAS . THAS %=6A—2A(3—d)—22, (4.3
ar S22 2ma)As-aA gy (346 dl [D1+D;]
1 2
E:dcl_d, (44)
T L+AL
2 T 1 2 T _ _
——=(2z-2—-ap)A,—4A————A,. (34 der=2p—2. (4.5
dl ( T) 2 [D1+D2]2 2 ( D c

Equations (4.2 and (4.3 determine the renormalization-
group flow in theD,—A parameter space. We have intro-
duced the parameter and d.; is the critical dimension.

We now turn to a discussion of the renormalization-groupEauations (4.2 and (4.3 determine the renormalization-

equations derived in Sec. Ill. Equatiofi8.39—(3.41) de-  9roup flow in theD,—A parameter space.
scribe the scaling properties in the isotropic short-range case, APove the critical dimension foe<0, i.e.,d>dc, =24
whereas Eqs(3.42—(3.47 account for the general case of 2 Of #<1+d/2, Egs.(4.2) and (4.3 have the trivial
anisotropic force fields with short- or long-range correla-Gaussian fixed point®3 =0 andA* =0, indicating that(i)
tions. We discuss the isotropic short-range and long-rangie subleading diffusion tern,k?, scales to zero compared
cases in some detail and summarize the results for the anis#ith the leading Ley term and(ii) the quenched disorder,
tropic cases, deferring details to the Appendixes. characterized by, scales to zero and thusirselevant The

We notice immediately a general feature of the effective long-wavelength Fokker-Planck equation takes the
renormalization-group equatiori8.42—(3.47: The require- form
ment that the anomalous diffusion coefficié, character-
izing the amplitude of the 1wy term D k*, stays constant
under renormalization, i.edD,(1)/d1=0 in Eq.(3.42, im-  anq for a particle at the origin at=0, i.e., Po(k)=1, we
mediately implies that the dynamic scale-dependent exposptain the scaling expressions in E¢®.5) and (2.6) with
nentz(l) locks onto the scaling indep, i.e., dynamic exponent= . Clearly, the physics is character-
ized by the interplay between the dimensibof configura-
tion space and the index specifying the tail of the Ley
distribution. Foru<1+d/2, the long-range Ly steps pre-
Consequently, in the case of neflights in a weak random dominate and control the scaling behavior.
force field the long time scaling behavior is entirely con- Below  the  critical dimension

IV. DISCUSSION

(—Tw+Dk*)P(k,w)=Py(k) (4.9

z=p. 4.1

for >0,

trolled by the leading anomalous e term D,k and the
dynamic exponent locks ontou. In other words, the ran-
dom force field has no influence on thewyeflights. The

i.e., d<d.=2u—2 or 1+d/2<u<2, we obtain, solving
Egs.(4.2 and(4.3) for dP,/dl=0 anddA/dl=0, the non-
trivial fixed point values foiD, andA:

intrinsic long-range superdiffusive behavior, that is, the oc-

currence ofrare events enables the walker to escape the
inhomogeneous pinning environment and the long time be-

(u—d)e

D3 = DG 2 2-d)e’

(4.7)
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FIG. 11. Plot of the critical dimensiod., as a function of the

scaling indexu. For =2 we have the Brownian cask,=2; for

1<u<2 the dimensiord.; depends linearly onu. The ballistic FIG. 12. Plot of the fixed pointA*,D3) as a function of the
caseu=1 is attained ford.;=0. The critical dimensioml ;=2u scaling indexu for 1+d/2<u<2.
—2 and the lined= u separate the regions I,Il and Il,lll, respec-

tively. In | the diffusion coefficienD, vanishes and the disorder is which determines howWP(k,w))r varies as we average out
irrelevant in Il D, diverges and disorder igelevant and in llID,  the short-wavelength degrees of freedom parametrized by the

diverges and disorder becomesevant scale parametdr. Similarly, we can derive a homogeneity

relation for the wave number and frequency-dependent dif-
(D,+D%)2 fusion coefficientD,(k,w,D,,D,,A), defined according to
=€ oAG=d) (4.8)  the Dyson equationi3.4) andk’D,(k,w)=—3(k,»). From

Eqg. (4.9 we thus obtain

The fixed p_ointD’z‘ indic_ate; that the subleading diffusive D,(k,w,D;,D5,A)

term D,k? yields a contribution compared to thé \yeterm

D.k*. The fixed point value of the diffusion coefficieBt; =e? "D, (ke', we™",D(1),Dy(1),A(]).

is negative since the pinning environment created by the ran- (4.10

dom force field reduces the ordinary diffusion coefficient
from its valueD3 =0 for u<1+d/2. The emergence of the In the vicinity of the fixed point 4*,D*), i.e., for largel,
fixed pointA* shows that for less than the critical dimen- We have, setting from Eq<¢3.30 and (4 D a(l)=ul and
sion d,;=2u—2 the quenched disorder in the long- choosing wave numberk such thatke'~1, the scaling
wavelength Fokker-Planck equation becomegevant In  forms
Fig. 11 we have shown the critical dimensidg as a func- C-u U  oax
tion of the scaling index. For w=2 we have the Brownian P(k,@,D1,D2,4)=k™#L(k/w™*,D;,D3 ,A%),
cased;,=2; ford<u <2 the critical dimension.; depends (4.1
linearly on . Note thatd;;=0 in the ballistic case foju Cpu-2 1 * A%
=1. The lined=dg,= u delimits the regiord<d,, where Da(k,®,D1,D2,4)=k**M(klw™,D1,D2 , A )(’4 12
naive perturbation theory fofD, diverges as discussed in '
Sec. lll. whereL and M are scaling functions. Making use of Eq.
In the Brownian casg.— 2 it follows from Eq.(4.7) that  (3.1) we also have
D3 ——D; so that the Ley term D ,k* precisely cancels the
diffusive termD,k? in the Fokker-Planck equatidB.2); this P(r,t,D1,D,,A)=t|"¥#G(r/|t|¥*,D;,D3 ,A%),
is consistent with the fact that there is no correction to first (4.13
loop order or more precisely to first order é=d;;—d in
the Brownian cas¢l8]. In Fig. 12 we have plotted the po-
sition of the fixed point A*,D%) as a function of the scaling
index u for e=d;;—d>0 or 1+d2<u<2.

similar to the scaling form in E2.6) in the absence of the
force field, and we infer as in Sec. Il a dynamic exporent
equal to the Ley scaling indexu, i.e.,z=pu.

Above the critical dimension, i.e., foe<0 or d>d;
=2u—2, we have the Gaussian fixed poinDj,A*)

=(0,0) and we infer from Eq(4.6) the complex scaling
Introducing the notation P(k,w,D;,D,,A) function

=(P(k,0))g, the scaling properties dP(k,w))r are deter-
mined in the long-wavelength limit by noting thi (k, ) )¢ XM

can equally well be computed from the original Fokker- L(x,D1,0,0 = ———. (4.14
Planck equation(3.2) as from the renormalized equation DX+ 1

(3.24). From the explicit scaling definitions in Eq&.20—
(3.23 we thus obtain the homogeneity relation,

2. Scaling properties

3. Scaling relations and long time tails
Using the matching procedurie6,43,45, we can also

P(k,w,D;,D,,A)=e*VP(ke',we® D (1),D,(1),A(1)), derive scaling relations for the wave number frequency-
(4.9  dependent diffusion coefficienD,(k,w). Expanding the
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renormalization-group equatioié.2) and(4.3) to first order
in € about the fixed point £*,D3) and defining A(l)
=A*+5A(1) andD,(I)=D3 + 8Dy(l), the linearized equa-
tions take the form déD,/dl=—(2—pu)éD,+A[(d
—u)/D1]8A anddSA/dI=—|e| SA with solutions

0

5D°+A5A i
2 D1

SA
2= _p el
e AD e )
(4.15
(4.19

Here, SA%= 5A(0) and 6DJ= 6D,(0) and Eqs(4.15 and
(4.16 hold both above and below the critical dimensihs.

oD,(1)=

SA()=5A% I,
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D,(k,0D,,A)ock™ @ W[ A* + 5AKI€], (4.2

ie.,
D,(k,0D,,A)x SA%k9 92 for d>d., (4.25
D,(k,0D,,A)xA*k™ (27092 for d<d.. (4.2

For d>d.,, D, vanishes in the long-wavelength limi
—0; for d<d.,, D, is divergent, in accordance with our
previous discussion.

The spatial dependence is inferred fror,(r)
= [exp(k-r)D,(k)d%/(2)9 and we derive the algebraic
long-range fall-off

Sincez(l) is locked on tou and suppressing the dependence

on D4, we obtain from Eq(4.10
D,(k,w,D,,A)=e2 W'D, (ke!,we D} + 6D y(1),A*
+ 5A(1)), (4.17

wheresD, (1) andSA(l) are given by Eqs4.15 and(4.16).
In the long-wavelength limik—0 and choosing such

that we*'=1 and from Appendix BD,(0,1D,,A)xA, we

obtain, inserting Eq(4.16), the scaling expression

D,(0,0,D,,A) ™ @ W A* 4 SAOglelin],
(4.18

Above the critical dimension, i.e., fa@>d;;=2u—2 or e
<0, A*=0 and we have

D,(0,w,D5,A)x SA w94~ dc2)/dc2, (4.19
where we have introduced the other critical dimension
deo= . (4.20

In the low-frequency limitw— 0, the coefficienD, vanishes
for d>d., and diverges fod ;<d<d;,. This behavior is
consistent with our remarks in Sec. Ill and clarifies the na
ture of the divergence. In factl.,= u plays the role of a
second critical dimension controlling the behavior of the
subleading diffusion coefficierd, and supports the heuris-
tic argument by Bouchauet al. in [27]. In the Brownian
caseu=2, the two critical dimensions coincide.

Below the critical dimensiond<d.; or >0, A*>0
and we have the leading behavior

(4.2)

which shows divergent behavior in the low-frequency limit.
From D,(t) = [exp(~iwt)Dy(w)dw/27 we finally obtain

D(0,w,Dp,A)x A% ¢~ (27 de2)ldcz,

the algebraic long time tails for the time-dependent diffusion dl

coefficient:

D,(0,t,D,,A)ct™%de2  for d>dy,

(4.22
(4.23

In a similar way we can extract the behavior of
D,(k,w,D5,A) in the long-wavelength limit. Setting=0
in Eq. (4.17) and choosind such thatke'=1, we obtain

D,(0,t,D,,A)oct"%er/de2  for d<d,,.

D,(r,0D,,A)cr%2=2d  for d>d,;, (4.27

D,(r,0D,,A)ocr27 9 % for d<d;. (4.28
In Fig. 11 the lined=d,,, the second critical dimension,
delimits the regions for the behavior ob,. For d
>d.,, D, converges; fod<d.,, D, is divergent.

It is instructive to consider the renormalization-group
flow in the A-D, plane about a fixed point in more detail.
This discussion is carried out in Appendix D. Another issue,
in the analysis of the renormalization-group equations
(3.389—(3.40 we chose to keep the kg coefficientD, fixed
under a renormalization-group transformation. This require-
ment leads, among other resultszte u, which is one of the
main conclusions of the present work. Clearly, keefdihg
fixed is an arbitrary choice and our scaling results cannot
depend on this choice. This point is discussed in Appen-
dix E.

B. The isotropic long-range case

We now turn to a discussion of the case of/dlights in
an isotropic long-range random force field characterized by a
fall-off exponenta. The case of Brownian motion in an al-

gebraic long-range field has been discussed by several au-
thors [4,40,27,49-5P both to first and second loop order.
The main conclusion here is that provided the force field
falls off slowly enough, the long-range force correlations in-
terfere with the Brownian walk and give rise to anomalous
diffusion in any dimension. For comparison, we have sum-
marized the Brownian case in Appendix F.

Keeping as usudD, fixed by lockingz onto u, we ex-
tract from the general equatioi3.42—(3.47) the appropri-
ate renormalization-group equations @ andA,=A,

D,(2d— u—a)+D(2d—2—a)
[D;1+D,]?

2_

(u—2)D,+A

(4.29

2

eA—4A (4.30

dl [D;+D,]?

where we have introduced the expansion parameter

(4.3)

€=acl—a.
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Here,a,;=2u—2 has the same value as the critical dimen-

sion defined in Eq(4.5 for the short-range case. In the
present contexta.,, of course, plays the role of a critical
fall-off exponent for the long-range force correlations.

The analysis now proceeds precisely as in the short-range

case. Fore<O0, i.e.,a>a,;=2u—2 or u<l+a/2, we ob-
tain the trivial Gaussian fixed point®3 =0 and A* =0,
showing that(i) the subleading diffusion teri,k? scales to
zero compared with the leading e term and (ii) the
guenched disorder, characterized My scales to zero and
thus isirrelevant The effective long-wavelength Fokker-
Planck equation takes the form in E4.6) and we obtain the
scaling expressions in Eg.5) and(2.6) with dynamic ex-
ponentz= . In contrast to the short-range case, where th

physics is controlled by the interplay between the dimensior}

d of configuration place and the iz index u, the fall-off
exponenta replacedsd in the long-range case fa<d. For
a>ag or u<l+a/2, the long-range ey steps predomi-
nate and determine the scaling behavior.

For >0, i.e.,a<ag or u>1+a/2, we obtain the non-
trivial fixed point values,D¥=—-D(2d—u—a)e/[4(u
—2)+(2d—2—a)e] and A* = ¢(D,+D%)?/4A, indicating
that the subleading terr®,k? yields a contribution com-
pared to the Ley term D, k* and that the quenched disorder
becomegelevant In the Brownian casg—2, D3 — —D,,
i.e., the Lery term D k* precisely cancels the diffusive term
D,k? in the Fokker-Planck equatia(3.2).

To leading order ine we have the fixed points
(D3 ,A*)=(0,0) for e<0 and the fixed point®3; = [ (2d
—u—a)l4(2— u)]D, andA* = eD4/4A for €>0. Similarly,
in the vicinity of either fixed point the linearized
renormalization-group equationdéD,/dl=—(2— ) 6D,
+A[(2d—u—a)/D,]8A anddsA/dl=—|e|SA with solu-
tions of the same form as in Eqgl.15 and(4.16), i.e.,

3u—2d—2 SA°
— O_ A" 77 777 |a=@-wl
6D,(1)=| 6DS—A 5=. D, °
3u—2d—2 SA° i 43
- —2_# D_le ) (4.32
SA(1)= 5A% 1!, (4.33

For the distribution functiof(k,»,D4,D,,A) and diffusion
coefficientD,(k,w,D,,D,,A) we obtain again for largé
and choosingke'=1 the scaling forms Eqs(G20 and
(G21). We also obtain the scaling form in EG.13 for P,
implying that the dynamic exponeamtlocks ontos.
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FIG. 13. Plot of the fall-off exponent as a function of the scaling

é'ndex,u. For u=2 we have the Brownian case. The lirees x and

=2u— 2 separate the regions |1l and ILlII, respectively. In | the
diffusion coefficientD, vanishes and the disorderiiselevant, in Il

D, diverges and disorder isrelevant and in Ill D, diverges and
disorder becomerelevant

to lowest order inA Egs.(4.18 and (4.24). For e<0 ord
>a>a.;, A*=0 and we have

D,(0,w,D5,A)x SA%w (@~ 2c2)/acz, (4.34

(4.39

whereag,=d.,= w is the second critical fall-off exponent.
In the low-frequency limitw— 0 or long-wavelength limit
k—0, D, vanishes fola>a., and diverges foa<a,. This
behavior is in accordance with the naive perturbation theory
discussed in Sec. Il and in Appendix B; introducing a force
correlationA~p2 ¢ in the integrand in Eq(3.8) for the
correction 6D,, we obtain a convergent contribution far
>a., and a divergingdD, for a<ac,.

For e>0 or a<ag, A*#0 and we obtain Eq94.2))
and (4.26 diverging in the low-frequency and long-
wavelength limits, respectively.

Finally, we obtain for the temporal and spatial behavior of
D, for e<0

D2(k,0,D2 ,A)‘X §Aokafac2'

D,(0,t,D,,A)oct™¥3c2, (4.36

Do(r,0D,,A)ocrd2"2-d (4.37

and fore>0 Eqgs.(4.23 and(4.28.

The scaling properties in the isotropic long-range case as
compared to the short-range case are conveniently summa-
rized in Fig. 13 and Fig. 14. In Fig. 13 we have plotted the
fall-off exponent as a function of. The linesa=a_, and
a=a.; delimit three regions |, I, and Ill. In I, the diffusion

As in the short-range case, the main conclusion is that icoefficientD, vanishes and the disorderiigelevant in I,

the case of Ley flights in a weak isotropic long-range force

the diffusion coefficienD, diverges and the disorder is

field, the long time scaling behavior is entirely controlled byrelevant and in Ill, D, diverges and disorder becomes-

the leading anomalous kg term D,;k*. The random force
field does not influence the kg flights. The long-range su-

evant We note that Fig. 13 is identical to Fig. 11 with the
dimensiond replaced by the exponeat In Fig. 14 in a plot

perdiffusive behavior enables the walker to escape the inhasf the exponena versus the dimensioth we have contrasted
mogeneous pinning environment and the long time behaviothe long-range case to the short-range case. The short- and

is the same as in the pure case.

For €<0, i.e.,d>a>a.;, we have the Gaussian fixed
point (D5 ,A*)=(0,0) and we obtain in particular the com-
plex scaling function in Eg4.14) for P(k, ). Implementing

long-range cases are delimited by the lohe a. For a>d,
we have the short-range case; #ord, the long-range case
(see Sec. Il In region |, delimited bya=a.; andd=d,;,
D, diverges and the disordertislevant in region II, delim-

the matching procedure as in the short-range case, we obtaited by a=a., andd=d.,, D, diverges and the disorder is
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a TABLE |I. Table of the behavior of the wave number, space-,
frequency-, and time-dependent subleading ordinary diffusion coef-
short range ficient in the case of short-range and long-range force correlations
\\ in the quenched background.
Dy(Kk) D,(r) Dy(w) D(t)
7/ . . d>2u—2 kd—# pu-2d w4~ t-dm
/I 1T II disorder irrelevant d<2u-2 K2 2-d-u a2 - @u-2)in
\ long range a>2u—2 k3=~ ru-d-a @ me t-an
/ a<2u—2 k~—2 r2-d-u w2 t—(2u=2)p

2u-2 \ \ >d,=2u—2 in the long-range case, the force correlations
scale to zero, indicating that the quenched background does
A// ///// d not influence the long-range walk characteristics. We note
2u-2 p that in the Brownian casg =2 and, consequentlg.; =2 in
the short-range case, coinciding with the dimension where
FIG. 14. Plot ofa versusd. The linea=d delimits the short- the Brownian walk becomes transparent, i.e., with a finite

range and long-range regions. In region Ill for « andd>u, the  probability of revisiting a site and thus becoming sensitive to
diffusion coefficientD, vanishes and the disorderiiselevant in the force correlations.

region Il for u>d>2p—2 andu>a>2u—2, D, diverges and For d<d;, or a<a., the strength of the force correla-

disorder isirrelevant and in region Il for 6<d<u and O<a<w,  tions characterized by scales to a finitéfixed poind value,

D, diverges and disorder becomesevant showing the relevance of the quenched background. In the
Brownian case this gives rise to a change of the dynamic

irrelevant and in region 1D, vanishes and disorder iisel- exponentz, unlike the Ley case wherez remains un-

evant In the Brownian casg =2 and region Il vanishes; the changed.
divergence ODZ coincides with the disorder becoming rel- A further aspect of the 'hg/ case is the appearance of a
evant ford=2 in the short-range case aae- 2 in the long-  second critical parametatt,; = x in the short-range case and
range case; sef27]. In Appendix B we briefly summarize g =4 in the long-range case. These parameters delimit the
the relevant aspects of the renormalization-group flow in theyehavior of the subleading diffusive term characterized by
A-D; plane. the ordinary diffusion coefficier,, which, of course, in the

In the case of a general anisotropic force field, the fixedBrownian case is the leading term. Fard,, or a>a, the
point structure becomes more complicated and we encount@jave-number-dependent diffusion coefficiedt(k) van-
the same features as in the Brownian case, Réfaind[27].  jshes in the long-wavelength limk—0; for d<d., or a
The analysis nevertheless proceeds as in the isotropic case; | correspondingly,D,(k) diverges fork—0. In the
and we therefore defer the discussion to AppendiXti® | évy case this behavior is subleading and does not affect the

short-range cageand Appendix H(the long-range cage leading term characterized by tifienchangeyidynamic ex-
ponentz. The above behavior is illustrated in Figs. 11, 13,
V. SUMMARY AND CONCLUSION and 14.

) , . . In the anisotropic short-range and long-range cases we

_In the present paper we have discusseuyLflights ind  encounter as in the Brownian case a more complicated fixed
dimensions in a variety of quenched force fields with fall-off y4int and renormalization-group flow structure, depicted in
exponenta. The main conclusion of the paper is that the Figs 16 and 17. However, as mentioned above, the exponent
long-range characteristics of the random motion, character; remains locked ontg. and we find that the behavior of the
ized by the dynamic exponeat is essentially not influenced gypleading diffusion coefficiend, is the same as in the
by the quenched force field and the exporetucks onto the  jsotropic case.
step indexu in all cases. In other words, the long-range | Taple | we have summarized the behavioDof in the
character of the Ly steps enables the walker to escape the,arious cases.
inhomogeneous pinning environment created by the
guenched force field.

This behavior is entirely different from the case of ordi-
nary Brownian motion where the dynamic exponenms en- The author wishes to thank K. B. Lauritsen, L. Mikheev,
hanced, corresponding to subdiffusive behaviorder2 in M. H. Jensen, H. J. Jensen, A. Svane, and T. Bohr for useful
the case of short-range forces and &x2 in the case of conversations.
long-range forces.

Although the dynamic exponerzt is unaffected by the
quenched environment, the phenomenon is still characterized
by a critical dimensiond.; in the short-range case and a
critical fall-off exponenta,, in the long-range case. The criti- The usual derivation of the Fokker-Planck equation
cal parameters delimit the relevance of the quenched forcgt5,54 depends in an essential way on the existence of the
field. For d>d.,;=2u—2 in the short-range case aradl moments of the distribution. Precisely this assumption

ACKNOWLEDGMENTS

APPENDIX A: THE FOKKER-PLANCK EQUATION
FOR LEVY FLIGHTS
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breaks down for ey flights for a step size distribution with glk-(ra=1) _ ek [rAn-—r(0] _q
f<2 and we must reconsider the derivation of the associated J dr, P(ra|r,At)= <T
Fokker-Planck equation. In Sec. Il we gave a heuristic deri- (A4)
vation of the Fokker-Planck equation based on the motion in

the absence of a force field. Here we derive the Fokkerwe invoke the Langevin equation for e flights (2.12),
Planck equation generalizing the standard procedure and re¢/dt=F(r)+ 5 with incremental solution

laxing the assumption of finite moments. Adapting the dis-

cussion in Ref[54] we define the functional r(At)—r(0)=F(r)At+ nAt. (A5)

Inserting Eq.(A5) in Eq. (A4), expanding and using the re-

AP(ryrp,1) sult (e'* 74— 1)=—constxk“At for a Levy distribution

=J R(rz)Tddrz, (A1) [cf. Egs. (2.3 and (2.4] we obtain ((e'k [F(AtH7AL
—1)/At)=—consx k*+ik-F(r), which, inserted in Eg.

(A3) and requiring it to hold for any variation d®, yields

where P(r,|rq,t) is the conditional probability distribution ) , , .
the Fokker-Planck equation for iz flights (in momentum

andR(r) is a generator function. Using the “chain rule” for

a Markovian stochastic process, spacg,
aP(kt) ) _
P(rzlrl,t)zf P(ry|r,ty) P(r|ry,t—t)d%,  (A2) o~ conskk P<k,t)—lk~2p F(k—=p)P(p,t).

| (A6)
and expanding in Fourier modeR(r)==3,e'*'R,, we ob-
tain, replacingsP/at by [P(t+At)— P(t)]/At, APPENDIX B: SELF-ENERGY, VERTEX, AND FORCE
CORRECTIONS TO FIRST LOOP ORDER

— de aikery ralry,t)
| E dr,e™ 2R, ot Here we evaluate the self-energy, vertex, and force cor-
k rections to lowest order for vy flights in a general aniso-
ek (=1 _1 tropic force field using the diagrammatic rules and diagrams
—E fddre'k R “ ddr,——— —5; P(rlray in Sec. Ill.
The self-energy correction is given by the diagrams in
X P(r|ry,t). (A3)  Fig. 7.2(k,w) splits up in longitudinal and transverse con-
tributions, i.e., 2 (k,w)=3 (k,0)+31(k,w). For %, we
In order to evaluate have
|
d
(k w)z—xzf dp Al (k/2— p)k (k2= p)(k2=p)- (K2t p)Go(k/2+ p,w). (B1)
29 (ki2—p)?

In order to extract the leading contribution @(k?) we first symmetrize Eq(B1) by replacingp by —p and, furthermore,
expanding G, }(k/2+p,w) and AL(k/2=p) for small k, G,(ki2+p,0)=G, (p,w)* (p-k/2)(uD,p* %+2D,) and
AL (k/2+p)=At(p) = (p-k/2)(a, —d)p3 92, we obtain toO(k?)

3L (k, w)——k2 f 2 )d{[(d 2)Go (P @) + (1D 1p*+2D,p*) JAN(p) +Gg H(p,w) Az (aL —d)p™t = Go(p,w)?.
(B2)
Similarly, we find for21(k,») to O(k?),
Sk w)=— —k2 (2 AT(p)Go(p, ®). (B3)

In the static limitw—0 and in the isotropic short-range casg,=\r=X\, and A-T(p)=A, we obtain in particular the
expression yielding Eq.3.9),

1,02 d% Dy(d—u)p“+Dy(d—2)p?
K0)=— k2o A f . B4
*k0=73K5 (2m)¢ [D1p*+D,p?]? (B4

In the context of the momentum shell integration method discussed in Sec. lll, the dilution of degrees of freedom requires that
the internal momentk/2+ p andk/2— p of the propagator and force contraction, respectively, must lie in the momentum shells

e '<|ki2+p|<1 ande '<|k/2—p|<1. We notice that this assignment is invariant under the symmetrizatior p per-

formed in order to extract the leadirkg correction to3,. On the shell we thus obtain f&(k,0) in Eq.(B4) for smalll,



PRE 58 LEVY FLIGHTS IN QUENCHED RANDOM FORCE FIELDS 1705

S (k0 - Linza S0 1Di(d=w)+Dy(d-2)

= [, B5)
2 (2m?d  [Dy+D,P (
whereSy=27%?/(d/2—1)! [cf. Eq. (2.1)], leading to Eq(3.32 for the correctionsD, to the diffusion coefficient.
In a completely similar manner we obtain in the general case on theshdll
1 . Sy 1A(d+u)Dy(AL+AL)+(a —d)(D;+Dy)A5]-A3(2d—2)(D,+Dy)(A[+A))
3 (k,0) = k2 d - LL(d+u)Dy(A7+Az)+(a (D1+D3)Az]— Ny( (D1+D2)(A; T4, | (B6)
2" (2m)dd [D1+D,]?

The vertex corrections are given by the diagrams in Fig. 8. In the isotropic short-range case, the correction is givéhdn Eq.
and S\ in Eq. (3.10 follows directly, i.e., no symmetrization is required here since the correction it39).is already of
orderk. Focusing on the corrections ¥q and\, the calculation is also quite simple in the general case. We obtain

1( d%
5)\T:_)\T)\Eaf (2 A (p)Go(p,0)?, (B7)
5l dp

and on the shek'<p<1,

S rn? Sy 1 AL+AS
=

M 2mid Dy, *

s Su 1 AL+Aj
(2m)® A [Dy+D,]

(B10)

The force corrections are given by the diagrams in Fig. 9. In the isotropic short-range case the results are given in Egs.
(3.17) and(3.12. In the general case, we obtain the correction to the vertex funEtf&rm,|,») defined diagrammatically in

Fig. 6, introducing the tensorslyadic$ A(k) =[k°kP/k2]AL(k) and AT(K)=[ 5*F—kKkPIKZ]AT(K),

T'(k,pl,0)=—N2k-A-(1)- p—A2k-AT(])-p

din . ~
+Aff k-AL(n)- (p+1—n)(k—n)-A (1—n) - pGo(k—Nn,w)Go(p+1—n,w)
(2m)¢

dn . _
+7\$j 2 )k‘AT(”)'(p+|_n)(k_n)'AT(l—n)'pGo(k—n,w)Go(pH—n,w)

71,2

dh -
+>\’f‘>\$f = k-AY(n)-(p+1—n)(k—=n)-AT(1=n)- pGo(k— N, ®)Go(p+1—n,®)

)9

2y 2 ddn AT AL
+)\T)\Lf (Zw)dk.A (n)-(p+1=n)(k=n)-A=(I=n) - pGo(k—n,w)Gy(p+I—n,w)

din . -~
+Aﬂf k-AL(n)-p(k—n)-AL(1—n)- (p+n)Gy(k—Nn,w)Go(p+n,w)
(2m)¢

dh ~
+)\$j Sk-AT(n)-p(k—n)-AT(I=n)- (p+Nn)Go(k—n,w)Go(p+ N, )
(2m)

dh . -
+Aﬁx%f k-A4(n)-p(k—n)-AT(1=n)- (p+n)Go(k—N,®)Go(p+ N, w)
(2m)

d%n

+>\$fo o)

k-AT(n)-p(k—n)-A(1=n)- (p+n)Go(k—N,0)Go(p+n,w). (B11)
a
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In order to identify, for example, the correction AbI we choosek-1=0 and take thé— 0 limit. Using thatk-A'(l)-p
=0, k-AT(l)-p=k-pAT(l), k-AT(n)-n=0, andk-A(n)-n=k-nAT(n), expressioriB11) reduces considerably and we find
the correction

1\ [ dd
5Al=hf(1—-a)f(ZﬂszTu»ALu»GéﬂxO) (B12)

and on the shek™'<p<1,

S 1\ (AT +AD (AT +AS
SAT=\2—1 /1——)( 1+42)(81+47), (B13)
(2md\" d] [D;+D,?
Similarly, we find the correction ta- by choosingk=1,
SAT=6A1, (B14)

i.e., the force corrections in the longitudinal and transverse cases are identical.

APPENDIX C: RENORMALIZATION-GROUP EQUATIONS IN THE CASE OF A GENERAL FORCE FIELD

Here we derive the renormalization-group equations for a general force field to first loop order following the procedure in
Sec. lIl. Including the corrections ©,, A, Ay, A", andAT we obtain the renormalized Fokker-Planck equation and force
correlationg cf. Egs.(3.18 and(3.19],

dd
o
x| TP kB pP(pw) v
—I ° - @),
(27)° PIFP
B L L kek? d
(EY(KEP(p))r=[A(k)+ A%(K)] % (2m)"o(k+p), (C2
T T kakﬁ’ d
(BY(K)BA(p))e=[AT(k)+ 6AT(K)]| 6°F— 2 (2m)"5(k+p), (C3)
|
wherek and p after the momentum shell integration now AL’(l):(AL+5AL)edI—ZBL (C9)
range in the interval £k,p<e~'. Renormalizing wave ! ! ! '
numbers, frequency, and distribution as in E§s20—(3.22 L )
and E and B according toE’ (k') =exp(— B, (1))E(k) and A5 (I)=Azed "2l d) (C9)
B(k")=exp(— B1(1))B(k), wherea and B, are given by
Egs.(3.30 and(3.31) with u replaced byu, 1, we obtain a T N (AT T\ adl-25
renormalized Fokker-Planck equation and force correlations Ap (D=(A1+0a)e K (€10
of the same form as in Eq$3.24) and(3.25. Furthermore, )
from the expressions in Eq€.23 and(2.24) for AT(k) and AT (=AJed—2hr-I(ar—d) (C11)
A" (k) we identify scale-dependent parameters and obtain the
renormalization-group equations or in differential form Egs.(3.42—(3.47. We have here
again fixed the vertex constants ¢ t=1 by choosingu,
Dj(l)=D,e #*e, (C4H  =1+d—z—N_'6r /I andur=1+d—z—A71oN/1.
D5(1)=(D,+8Dy)e %, (C5  APPENDIX D: THE RENORMALIZATION-GROUP FLOW
IN THE ISOTROPIC CASE
N (D=(\ + N e TrdlTath (Co) 1. The isotropic short-range case

Eliminating | in Egs. (4.15 and (4.16 and settingu
M(1)=(N7+ ONp)e” rdrathr (€7)  =d,, ande=d,,—d we obtain
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FIG. 15. Renormalization-group flow in the-D, plane about
the Gaussian fixed pointA,D%)=(0,0). In case(@ d>pu, case
(b) d=pu, and caséc) do;<d<pu.

5AO (Z*dcz)”dcl*d‘
6D ,= 5D2+AD—
1

SA

SA°

A

—D—15A.

(D1)

In Fig. 15 we have depicted the renormalization-group flowD1=D3exp(2—w)l) and A= Aexp(2—d)I).
about the Gaussian fixed poinkt,D%)=(0,0) in the three

casesi(a) d>d,,, (b) d=d,, and(c) de,>d>d.;. In case
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(2—dc2)/\ac1—a\

5Dz sp0ppSr—2d-2 5&? SA
? ? 2=p D1l sA°
3u—2d-2
~A—————05A. (D2)
2=

Focusing on the flow about the Gaussian fixed point
(A*,D%)=(0,0), the discussion in the isotropic short-range
case above applies witth replaced bya. For d>a> u, the
trajectories approach the fixed point with vertical slope ex-
cept for the trajectories originating from the domain of initial
values on the line 6DS=-[A(3u—2d—2)/(2
—u)D;]6A°, corresponding to the position of the nontrivial
fixed point emerging below 2— 2. In the marginal casg

=a the trajectories approach the fixed point with constant
slope, i.e., the linear scaling regime dependsuoand be-
comes largest fop=a, precisely the case where naive per-
turbation theory or the scaling analysis above yield a diver-
gentD,. Fora<u the trajectories approach the fixed point
with constant slope- A(3u—2d—2)/(2— u)D4, except for
trajectories withSA°=0, which lie on the lineA=0. Figure

15 also applies in the long-range case witheplaced bya

but note that the slope-A/D; is replaced by—A(3x—2d
—2)/(2— u)D;.

APPENDIX E: KEEPING THE ORDINARY DIFFUSION
COEFFICIENT CONSTANT UNDER RENORMALIZATION

We here briefly repeat our renormalization-group analysis
but now keeping the diffusion coefficiel®, fixed under
scaling. Limiting our discussion to the behavior near the
Gaussian fixed poinA* =0, we thus obtain from Egs.
(3.39—(3.41) z=2 and the renormalization-group equations
dD,/dlI=(2—u)D; and dA/dI=(2—-d)A with solutions
From
the homogeneity relation(4.9 we have, settinga(l)
=2I, P(k,w,D;,A)=e?P(ke',we?, D% M AOg2=dly

(@) for d>d,,, corresponding to region I in Fig. 11, the first which forms the basis for our scaling analysis. Choosing

term in Eqg.(D1) dominates and near the fixed poifD,

~[8D3+ASAYD [ SA/S5A0)@dc)/de,~dl e the trajec-

ke'=1 we deduce the scaling formP(k,w,D;,A)
=k 2P(1,w/k?D%k*~2,A%972), Note, however, that this

. _ . 0 — — .
tories approach the fixed point with vertical slope except fofform does not imply=2 sinceDk* 2 andA°k? "2 diverge
the trajectories originating from the domain of initial values in the long-wavelength limik—0. In fact, choosing such
on the linesDY= — (A/D,) SA°, corresponding to the posi- that ATk™ “<1 we obtain perturbativelyP(k,,D1,A)

tion of the nontrivial fixed point emerging belosl;. In this
regime D, vanishes as discussed above. In césefor d
=dc2, the marginal case, we ha\ﬁD2=(5D2/5A°) SA and

=k 2(—iw/k?+D%* 2+ D,+consx A%I472) "% or

P(k,,D1,A)=(—iw+D%*+D,k?+constx A%%)~*

the trajectories approach the fixed point with constant slope,
i.e., the linear scaling regime depends @nand becomes  gimijar to our previous results and implying the dynamical
largest foru=d, precisely the case where naive perturbatlonexponemZ: L.

theory or the scaling analysis above yield a diverdesatin
case(c) for d;;<d<d,,, corresponding to region Il in Fig.
11, we haveéD,=—(A/D;)SA. The trajectories now ap-
proach the fixed point with a constant slope\/D,, except
for trajectories withdA°=0 which lie on the lineA=0.

APPENDIX F: THE ISOTROPIC LONG-RANGE CASE
FOR BROWNIAN WALKS

Here we recover the well-known results in the Brownian
case to first loop ordef4,27]. The renormalization-group
equations in the isotropic long-range Brownian case are ex-

Eliminating | in the renormalization-group equations tracted from the general equatio(®42—(3.47) by setting
(4.32—(4.33 we have u=2,D,=0,D,=D, A}'"=0, A5T=A, anda, ;=a, i.e.,

2. The isotropic long-range case
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APPENDIX G: THE ANISOTROPIC SHORT-RANGE CASE
: (F1)

ol >

dD
—=(z—2)D+A(2d—a-2) i
dl Generally the quenched force field must be expected to be

anisotropic consisting of a transverse divergence-freeBart

and a longitudinal curl-free paB. The vector character &

a1 - (22— 2—a)A—4A§. (F2is reflected in the transverse and longitudinal correlation
functionsAT andA', respectively, introduced in Sec. II. The

KeepingD fixed we havee=2—A(2d—a—2)A/D?and the ~case of Brownian motion in a short-range anisotropic force

AZ

equation forA, field has been discussed to first loop order in REZ6,35.
As in the isotropic case treated in Ref&8,2( to second
dA A2 loop order, the critical dimension @,;=2; belowd.; the
Wz(Z—a)A—ZA(Zd—a)F. (F3)  long time behavior is controlled by the isotropic fixed point

AT =A} =A*, giving rise to anomalous subdiffusion. How-
The expansion parameter is-&. For 2—a<0, we obtain €Ver, at intermediate times the diffusional character is con-

the Gaussian fixed poink* =0, the disorder is irrelevant, trolled by a transverse fixed poidtr #0,A7 =0.
andz locks onto 2, characterizing ordinary diffusion. For 2
—a>0 we have the nontrivial fixed pointA*=(2 1. The Brownian case

—a)D?/2A(2d—a) and the dynamic exponent , .
) ( ) y P In order to clearly illustrate how the kg case differs

-2 from the Brownian case, we briefly discuss the
z=2-qg—7(2-a), (F4  renormalization-group equations in the Brownian case. Set-
ting D;=0,D,=D, A}"=A, 1, and A5T=0, we obtain
signaling anomalous diffusidi27], due to the interference of from the general equation8.42—(3.47)
the quenched long-range force correlations with the Brown-
ian walk. In the vicinity of either fixed point we haug(l) dD (2d—2)Ar—dA,

= constx exp(—|2—all)+A* and we obtain scaling relations W:(Z_Z)DJFA D2 ' (G1)
for the distribution P(k,w,A) and the wave number and
frequency-dependent diffusion coefficiddtk, w,A),
dA+ AAg
P(k,w,A)=e?P(ke',we?, A* + constx e 1272ll) ——=(2z2—d—2)Ar—2A(3—d) . (G2
dl D2
(F5)
— a(2-2) I zl Ak —|2—all
D(k,w,A)=¢€ D(ke',we*,A* +constx e )(.F6) dA, AE AA
W=(22—d—2)AL—4A§+2A(d—1) 5z
Similar to our discussion in Sec. IV, we infer from Eq. (G3)

(F5) the dynamic exponert and from Eq.(F6), choosing
we?'=1 and ke'=1, D(0,0,A)xw 2 2/Z[A* +const
X 0~ 12727] and D(k,0,A)xck™ (72 [A* +constx kl2—2al].
Fora>2, we haveA* =0 andz=2, i.e.,

Keeping D fixed, we choose z=2—-A[2(d—1)A+
—dA_]/D? and we have the equations far andA, ,

D(0,0,4)x @7, (FD dA; 2(d—1)AZ+(3—2d)A Aq
WZ(Z—d)AL—ZA 2 f
D(k,0A)ocka~2, (F8) D
(G4
which vanish in th&k—0 and w—0 limits, and for the tem-
oral and spatial behavior,
P P dA, (d—1)AL Ar+(2—d)A?
D(0,t,4)t~22, (F9) ar - (2rdAcm2a D? |
D(r,0A)ocr2-274, (F10 @9
Fora<2, we haveA* >0 andz given by Eq.(F4) and Above the critical dimensiod.;=2 we obtain the stable
. 20122 Gaussian fixed pointy}" ,AT)=(0,0), corresponding to nor-
D(0,w,A)xA*w , (F1)  mal diffusion forz=2 and irrelevance of the quenched force
PP 3 field. Belowd.; to O(2—d) we obtain the stable isotropic
D(k,0A)xA*k-Hd-2Md-1)2-a) (F12 fixed point (As‘l,A$)=[(2—d)D2/2A,(2—d)D2/2A], con-

ftroIIing the long time anomalous behavior characterized by
z=2+2(2—d)? evaluated to second loop orded((2
—d)?) [18,20 and the unstable anisotropic transverse fixed
D(0,t,A)x A*tM2A(d-2/d-D](2-a)~1 (F13 point (A} ,A¥)=(0,(2—d)D?/4A), determining the cross-
over at intermediate times. We shall not pursue the Brownian
D(r,0A)xcA*rld=2/d=D]2~a)~d (F14)  case further here but refer to Ref86,35,27,49-5p

where the behavior oD depends also on the dimension o
the systend [4,27]. Also,
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2. The Levy case déAT

In the Levy case we proceed as in Sec. IV, settirrgu in dr
order to fixD;,ATT=A, 1, andA5 =0, the general equa-
tions (3.42—(3.47) imply the renormalization-group equa-

A¥ A%

L T
e—2A(3—d)— 2>6AT 2A(3— d)—2>6AL.

l l

(G194

tions In the vicinity of the Gaussian fixed point we have the
d 5 solution
g1 = (k=2)Da+A
5D,(1)=| 500+ ~2=# =9 5\
[D1(2~ =) ~DadlAy +(D; D) (2d-2)A7 A)=[oDet g | mg—
D,+D _
(D1+Dy)? L 2d 1)5A0) RPN
(G6) d— T
A 2A DAy D(—(Zd“ D oaror 2 snol e
b ,
el : [D;+D,]? ! H #
(G195
dar_ » 2A(3—d) Al (G8) ]
T A ) —T ¢
di T [D.+D, 2 SAL(1)=06A0e (G16)
wheree=d,;—d=2u—2—d. SAR(1)=56A%, (G17)

Again we observe that irrespective of the vector character
of the random forc& the dynamic exponentlocks onto the  ang the fixed point is stable far<0, i.e. Jd>d=2u—2.

Lévy index u, owing to the long-range character of thevire Eliminating| we obtain for the flow in the,,A, ,A+)
steps. The equationi&6)—(G8) also have three fixed points: gpace fore<0,

* * *\ i
(D} A} ,A%)=(0,0,00 (Gaussiah (G9) Al2—p—d _, 2(d-1)
sD,=| oD+ — SAL+ AT
(D3 A} AT) ou G T
(2—w)l|€
o Di D% | | AL+ w)l|el
€2(3-0d)'“2A(3-d) “2A(3-a)) (SoMoPiO. SALT

(G10 2—p—d 2(d—1)

DJ ia SA + i a 5A4 (G189

,O) (longitudina).
(G11) and the discussion in the isotropic case applies with a few
modifications. Fod>d, the trajectories approach the fixed
In order to examine the stability of the fixed points we deriveP0INt with vertical slope with exception of trajectories lying
renormalization-group equations t®(e). Setting D,(1) [N the plane
=D3+D(l), AL(N=AF+8A.(I), and A;(l)=AF

+8A+(1), we have D __A
,=
D,

D,(4-3 D?
(DX A A%) (61(—“) .

4 2—u "€2A

2—p—d 2(d—-1)
L+
d—u d—

SA¢|. (G19
déD,

Am+2ﬂ—®Af—Qd—DA$
d

D

In the limiting cased= u the trajectories approach the
fixed point with constant slope, i.e., the linear scaling regime
Dy(2—u—d)+D%(2u+d—4) depends oru and becomes largest fagr=d, corresponding
+A 2 oA, to the case where naive perturbation theory yields a diver-

D1 gent diffusion coefficient. Finally, fod ;<u<d the flow
(2d—2)(D,~D%) approaches the fixed point tangentially to the plane defined
5 SA+, (G12 by Eq.(G19. The characteristics of the flow are depicted in
D1 Fig. 15.
The scaling analysis d® andD, also proceeds as in the
2A4A’L‘ —(d— 1)A$) sA isotropic case. Suppressing the dependencP grwhich is
- 2 L

déA.
ar

€—

D2 kept fixgd, we defindD(k,_w,Dz,A.L,AT)=(P(k,w))F and
1 we obtain the homogeneity relations:
2A(d—1)A¥ | |
+|——=—| %A, (G13 P(k,w,D,,AL A7) =e*P(k,e',we* ,Dy(1),A (1),A+(])),
D} (G20
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D,(k,w,D5,A ,A7) ot
=e(27“)|D2(kel,we“|,D2(|)AL(')aAT(l))' @
(G2)

For €<0, i.e.,d>d.;, where the stable Gaussian fixed
point controls the scaling behavior, we obtain, of course, the
same scaling properties Bf as in the isotropic case, i.e., the
dynamic exponenz= y andP is given by the scaling func-
tions in Egs.(G20 and (4.14). For the diffusion coefficient
D, we obtain, correspondingly, ‘

D2(kvw1D21AL !AT)

A
=@ 1D, (ke!,wer! A el Areldl. £ L
(G22
A
In the long-wavelength limik— 0 and using the pertur- T
bative resultD,~ aA| + BAT we have, settingre*'~1 and
ke#'~1, the same results as in the isotropic case given by (b)
Egs.(4.19 and (4.25 and the corresponding results for the I
temporal and spatial behavior in Eq4.22) and(4.27).
Below the critical dimensionl;; in the neighborhood of
the isotropic fixed point in Eq(G10 we obtain from Egs. A
(G13 and(G14) the solutions forSA| and 5A+,
(3—d) / o d- 0
=— el
SAL(I) 2(d—2)\5A'- 3= d5A e
de 12 (5A° SAQ 0)e lell(d-1/E-d)) AL
(d=2) G S A
(G23
At
SA(1)=— 3-d /5A° - 5A° e lel V
T 2(d—2)\ 3-d
I (c)
3—d
0 [ell(d—1)/(3—d)]I
2(d 2)(5A —sA%e” A
(G249 4
and we conclude that the isotropic fixed point is stable for
l<d<dg.
Similarly, near the anisotropic fixed point in Eg511) we
have
o 971 o) > - A
5AL(I)=(5AL—Q5AT)e lel G > A

d-1 -]l FIG. 16. The anisotropic short-range case. Renormalization-
+ Q5AT9 € , (G2H group flow in theA;-A, plane.(a) d>d_61:_2,u—2 and the trajec-
tories flow towards the stable Gaussian fixed pof®) ith con-
stant slope.(b) 1<d<d;; and the trajectories flow towards the
Ar(l)= 5A$eflel[(lfd)/(2)]l (G26) nontrivial isotropic fixed point I(). (¢) d<1 and the trajectories
flow towards the nontrivial longitudinal fixed poinAj.
and we infer that the anisotropic fixed point is stable dor
<1.In Fig. 16 we have depicted the renormalization-group, oo-npix H: THE ANISOTROPIC LONG-RANGE CASE
flow in the (A7,A,) plane in the three caséa) d>d.;, (b)
d.;>d>1, and(c) d<1. We finally discuss the anisotropic long-range case. In Sec.
Finally, belowd.; we obtain for the diffusion coefficient Il we have given the general renormalization-group equa-
D, the same result as in the isotropic case in Egs21), tions in the case of two separate fall-off exponemtandar
(4.26), (4.23, and(4.28). for the longitudinal and transverse force correlations, respec-
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FIG. 17. The anisotropic long-range case. Renormalization-

group flow in theAt-A, plane.(a) a>d.;=2ux—2 and the trajec-
tories flow towards the stable Gaussian fixed poi@) (vith con-
stant slope(b) a<d,;=2u—2 and the trajectories flow towards
the nontrivial line of fixed pointsl() with constant slope.

tively. For simplicity here we only consider the case of a

common fall-off exponend=a;=a, <d. KeepingD, fixed
by locking z onto x and settingA; =0 andALT=A ;,
we extract from EQs.(3.42-(3.47) the renormalization-
group equations

D1(2—,u—a)—D2a
(D1+D5)?

D,

5 =(h—2)D,+A

L

4 D1(2d-2)+Dy(2d-2)

T (H1)
(D;+Dy)?
dA, A?
——=eA -4A——, (H2)
di (D1 +Dy)?
ALA
—ToeA ap——"T (H3)
di (D;+Dy)?

where we have introduced the expansion paramete? u
—2—a=dg —a. To first order ine we identify the usual
Gaussian fixed pointX} ,A¥)=(0,0) and a line of non-
trivial fixed pointsA¥ = eD2/4A. We note that here there is
no isolated nontrivial fixed point unlike in the short-range
case discussed abo{&3].

To linear order ine we obtain in the vicinity of the re-
spective fixed points, settingg, r=A{ + A 1,

doA,
dr

8A
€— _ZAE
1

SA, (H4)
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doA;
di

4A
€— _ZA:
1

(HS)

4A
Dl

In the neighborhood of the Gaussian fixed point we have the
solutions 6A1(1)=6A%¢ and A, (1)=6A e, showing
that the fixed point is stable fo¢e<O0, i.e., ford>a>2pu

—2 (note thata<<d in the long-range cageEliminating the
scaling parametel we obtain for the flow in theA -A¢
plane SA1=(5AY 5AL)5A , i.e., the trajectories approach
the fixed point with constant slogé3]. Similarly for the
scale-dependent diffusion coefficidnt () we have

Al2—p—a d(d—1)

6D,= 5D3+D—1 - SAP+ ———— A% |el2~ M)
Al2—p—a 2(d—1
— D_l % E+ ( — ) 5A-?— eE'. (H6)

Eliminating| we obtain for the flow fore<<0

Al2—u—a 2(d—1)
5D2=[5D2+D—1 S 0 SA9
5AL’T (27#)”5'
5A0 ¢
A[2—u—d 2(d-1)
“Bl e Mt SAt (H7)

and the discussion in the anisotropic short-range case applies
with d replaced bya.

The scaling analysis d® andD, also proceeds as before.
We have the general homogeneity relations in E@20)
and (G21). For €<0, i.e.,,a>2u—2, the Gaussian fixed
point controls the scaling behavior. The dynamic exponent
z=pu andP is given by Eqs(G20 and(4.14. For D, we
obtain

Dz(k,w,Dz,AL ,AT)
=e2=MID,(ke!, we ' A el Areldh
(H8)

and using the perturbative resudt,<aA + BAT we find,
settingwe*' =1 andke'=1, respectively,

D(0,0,D5,Ap ,A)xw@ Ik, (H9)
D,(k,0D,,A ,Ap)ock?d™#, (H10)

and
D,(0,t,Dy,AL ,Aq)oct™¥H, (H12)
D,(r,0D,5,A ,Aq)ocr#=d-2a, (H12)
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For €>0, i.e.,,a<2u—2, we have in the vicinity of the proach the line of fixed pointa} =¢ D2/4A with slope
stable line of fixed pointssA, (I)=28A% ¢ and sA+(1) AX/AY . In Fig. 17 we have shown the renormalization-
= 8A%+ SAY(A%/AF) (e '~ 1) or eliminatingl 5SAt— A% group flow in theA-A, plane in case¢a) a>d.; and (b)
=(A%X/A}) (A — 6AY), showing that the trajectories ap- a<dc;.
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